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TacPrint: Visualizing the Biomechanical
Fingerprint in Table Tennis

Jiachen Wang , Ji Ma , Zheng Zhou, Xiao Xie , Hui Zhang , Yingcai Wu , and Huamin Qu

Abstract—Table tennis is a sport that demands high levels of
technical proficiency and body coordination from players. Biome-
chanical fingerprints can provide valuable insights into players’
habitual movement patterns and characteristics, allowing them to
identify and improve technical weaknesses. Despite the potential,
few studies have developed effective methods for generating such
fingerprints. To address this gap, we propose TacPrint, a frame-
work for generating a biomechanical fingerprint for each player.
TacPrint leverages machine learning techniques to extract com-
prehensive features from biomechanics data collected by inertial
measurement units (IMU) and employs the attention mechanism
to enhance model interpretability. After generating fingerprints,
TacPrint provides a visualization system to facilitate the explo-
ration and investigation of these fingerprints. In order to validate
the effectiveness of the framework, we designed an experiment to
evaluate the model’s performance and conducted a case study with
the system. The results of our experiment demonstrated the high
accuracy and effectiveness of the model. Additionally, we discussed
the potential of TacPrint to be extended to other sports.

Index Terms—Data transformation, biomechanical data,
machine learning.

I. INTRODUCTION

TABLE tennis is a challenging and competitive sport in
which players use various techniques to respond to their

opponent’s strokes (a stroke represents a player hitting the ball
once) during a match. The success of these techniques largely
depends on the player’s body coordination [65]. For instance,
when playing a forehand topspin, a commonly used technique,
the speed and spin of the ball can be affected by the rotation
rate and angle of the player’s trunk and shoulders [23]. To help
players optimize their body coordination, extensive studies have
been conducted to explore the biomechanics of table tennis.
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Researchers use sensors or motion capture devices with inertial
measurement units (IMU) to collect players’ biomechanical data
which includes acceleration, angle, etc. With the data, these
studies focus on unraveling the complex interactions between
various body segments and their impact on the execution of
specific techniques. However, few studies have investigated the
biomechanical fingerprint of an individual player.

We define the biomechanical fingerprint of a player as the
characteristic set of biomechanics that summarize and reflect
his/her habitual movement patterns. These patterns can facilitate
performance enhancement, personalized training development,
injury prevention, talent identification, as well as innovation in
training methods and techniques. However, obtaining the biome-
chanical fingerprint is a non-trivial issue because each player
possesses a unique biomechanical profile that characterizes
the complex interplay of body movements and performances.
Developing a comprehensive method to accurately capture and
characterize the unique aspects of each player’s biomechani-
cal fingerprint poses a significant challenge. Researchers have
tried to use 177 diverse indicators to specify the fingerprint of
rowers [18]. While this method is effective, it is difficult and
time-consuming to extend to our field since the game rules of
table tennis are quite different from those of rowing and we need
to assess each indicator to determine whether it can be used for
specifying the fingerprints of table tennis players. To address
these issues, we leverage machine learning and visualization
techniques to automatically generate and visually investigate
the biomechanical fingerprints of table tennis players.

Machine learning techniques have opened up new avenues
for the analysis of biomechanical data in sports [37], [38],
[39]. In table tennis, established techniques such as Support
Vector Machine (SVM) [21] and Long-short Term Memory
(LSTM) [22] have been used to support research in various
areas such as stroke recognition [4], [61] and ball speed and
spin estimation [3], [49]. Besides, visualization techniques have
also successfully driven the development of biomechanics in
sports. [2]. In table tennis, an IoT + VA framework [49] has
been proposed to facilitate investigating biomechanical data in
training. Despite the widespread application of machine learning
and visualization techniques in table tennis, investigating biome-
chanical fingerprints using these techniques still poses three
challenges: feature comprehensiveness, model interpretability,
and result intuitiveness.

First, existing studies can extract highly representative fea-
tures from biomechanics data since they have achieved high
performance in various tasks [3], [4], [61]. However, these
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Fig. 1. The interface of the system. A print overview (A) presents the visualized fingerprints (B) of various players. An inspection view (D) presents the detailed
attention information (F) selected in the print overview (C). A detailed view (H) presents the original biomechanical data of the dimensions selected in the inspection
view (E, G).

studies use different models for different tasks. If we focus
on one of these models, the features are not comprehensive
enough since the features may only work on particular tasks,
representing limited data features. If we include all of the mod-
els, it is difficult to fuse all features due to the heterogeneity
of feature vectors. How to extract comprehensive features to
generate the fingerprint is a challenge. Second, state-of-the-art
machine learning techniques, such as LSTM, are inherently
non-linear, making it difficult to interpret the mechanisms and
results of these models. The fingerprints generated based on such
techniques will naturally be confusing. Additionally, coaches
and players intrinsically have difficulties in understanding ma-
chine learning models. They would doubt the reliability of the
generated fingerprints. How to increase the interpretability and
credibility of the model is also a challenge. Third, the fingerprints
generated by machine learning techniques are abstract. They
are often represented by high-dimensional vectors or tensors.
While the numerical representation can be accurate in capturing
players’ characteristics, analyzing such data is struggling. How
to effectively visualize these fingerprints to support efficient
investigation is challenging.

To address these challenges, we worked extensively with
professional analysts serving the Chinese national table tennis
team to introduce TacPrint, a framework for generating a biome-
chanical fingerprint for each player. The framework consists
of four components, namely, data recombination (Fig. 3(A)),
feature generation (Fig. 3(B)), feature fusion (Fig. 3(C)), and
print embodiment (Fig. 3(D)). Data recombination transforms

Fig. 2. The data in this work. (A) is the raw data of one timestamp. (B) is the
time series data transformed from (A). (C) presents the timestamp of a peak and
the range of a serve. (D) is the shape of the final serve data.

the serve data into three forms. Feature generation generates
summative features, spatial features, kinematic features, and
temporal features based on the transformed data. After that,
feature fusion integrates all features into one fingerprint, and
print embodiment visualizes the fingerprint for further analy-
sis. To solve the first challenge, we constructed a new model
based on a bidirectional LSTM network (BiLSTM) [19]. The
performance of the model was better than existing models in
various tasks (i.e., the recognition of technique, placement, spin
type, player, holder type, profession level, and gender). We can
only use this model to acquire comprehensive features in feature
generation. To solve the second challenge, we employed the
attention mechanism by incorporating four attention layers. This
enabled us to unveil the model’s attention from four perspectives,
which served as integral components of the fingerprints. To
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Fig. 3. The framework of TacPrint. The data recombination component (A) transforms the data of a serve into three forms. The feature generation component
(B) generates the biomechanical features from four perspectives. The feature fusion component (C) combines all kinds of features to construct a biomechanical
fingerprint. The print embodiment component (D) visualizes the fingerprints with an interactive system.

solve the third challenge, we designed a novel visualization for
biomechanical fingerprints. Based on the design, we developed
an interactive visualization system to support the exploration
and investigation of fingerprints. We used the system to discover
several valuable insights into the players’ biomechanical charac-
teristics. The insights were validated by the players themselves.
The framework is generalizable for various sports, such as tennis,
basketball, and soccer, as long as the input is biomechanical data
collected by IMU devices. The contributions are as follows.
� We defined the concept of biomechanical fingerprints.
� We introduced a framework called TacPrint for generat-

ing the biomechanical fingerprints of table tennis players,
which can be generalized for other sports.

� We developed an interactive visualization system to sup-
port the analysis of biomechanical fingerprints.

� We designed an experiment to verify the models within
TacPrint and discovered valuable insights with two cases.

II. RELATED WORKS

In this section, we reviewed research on biomechanics in
table tennis, machine learning in sports biomechanics, and sports
visualization.

A. Biomechanics in Table Tennis

Biomechanics research in table tennis aims to examine the
mechanical characteristics of players’ bodies as they execute
various techniques [32]. For example, Iino and Kojima [24],
[25] explored the energy generation mechanism of the upper
limb during the execution of the topspin forehand. Building on
these studies, Iino et al. [28] found that the lower limb has a
significant impact on upper limb performance, resulting in exten-
sive investigations of the role of the lower limb in topspin fore-
hand execution [20]. Additionally, researchers have explored
the biomechanical properties of other body parts, including
the trunk [26], [27] and the sole [16], [31]. A comprehensive
review of these studies is available [55]. The insights from
these investigations can help coaches develop training regimes
to improve players’ performance.

However, these studies endeavor to discover common char-
acteristics by examining the biomechanical data of multiple
players. The specific characteristic of an individual player, also
known as the biomechanical fingerprint in this work, has not
been fully studied yet. Gravenhorst et al. selected 177 perfor-
mance metrics as the fingerprint of rowers to characterize their
technique styles [18]. While this method can help coaches find

the most suitable players for crews, it is time-consuming since
researchers have to examine considerable metrics. Besides these
metrics are not compatible with other sports. To fill this gap, we
propose TacPrint, a fingerprint generation framework based on
existing biomechanical findings in table tennis.

B. Machine Learning in Sports Biomechanics

In recent years, machine learning techniques have assumed
an increasingly vital role in the analysis of biomechanics data
in sports. One of the most popular machine learning methods
is SVM [21]. Both Lu et al. [37] and Blank et al. [4] employed
an SVM-based classifier for action recognition. Wang et al. [52]
used a PCA+SVM method to investigate the differences between
the elite and amateurs. To achieve better performance, non-linear
models are used for analysis. For example, Ma [38] constructed a
two-layer neural network to recognize movements in basketball.
Wang et al. [49] tried to use LSTM [22] to classify different tech-
niques and positions of table tennis strokes. Other methods such
as Random Forest [6], XGBoost [7], LightGBM [30], etc., have
also been applied to action recognition or indicator estimation
tasks. These studies present the advantage of machine learning
methods in extracting players’ biomechanical features in various
sports. This advantage suggests the potential to generate players’
fingerprints by using learning-based methods.

However, the biomechanical features extracted by existing
learning-based methods are not comprehensive enough for gen-
erating fingerprints since each of them performs well on par-
ticular tasks. It is challenging to combine all of the heteroge-
neous features of various models. A comprehensive method that
is powerful enough for various tasks is necessary. Moreover,
the features of the non-linear models are difficult to interpret.
Analysts cannot understand the physical meaning of abstract
feature vectors. To solve these issues, we refer to existing
studies and propose TacPrint, a comprehensive and interpretable
learning-based method for generating players’ biomechanical
fingerprints.

C. Sports Visualization

Recent years have witnessed an increase in the visualization
methods for sports analytics [15], [43], [64]. Time series visual-
izations are commonly used to display the spatiotemporal fea-
tures of competitions. For example, line charts and histograms
are popular choices for presenting the variation of score-related
statistics [42], [46] and players’ performance indicators [1], [17],
[29] in soccer and basketball. Trajectories are also commonly
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used to display players’ movements [9], [36], [48]. Besides,
researchers also introduced many novel time-series visualiza-
tions. Wu et al. [60] introduce a formation flow to visual-
ize the dynamics of formation transformation in soccer. Chen
et al. [8] designed GameFlow to present game scores along with
team information in basketball. Wongsuphasawat and Gotz [56]
proposed Outflow to display events and outcomes during com-
petitions. Since the biomechanical data is time series data, we
used time series visualizations such as line charts to visualize
the temporal features within a biomechanical fingerprint.

Giyph-based visualizations are also widely used in sports
visualization to present patterns within high-dimensional sports
data, including key events, game scores, action attributes, per-
formance indicators, etc. For example, in soccer, both Rusu
et al. [45] and Stein et al. [47] designed a novel glyph to
compare players’ performances during matches. Xie et al. [62]
used a pitch-based glyph to present the dynamic passing patterns
vividly. In basketball, Wu et al. [59] introduced a glyph to encode
off-ball movement. The glyphs are plotted on a two-dimensional
coordinate system to provide an overview. In rugby, Legg
et al. [33], [34] and Chung et al. [10], [11] designed player-based
glyphs to facilitate analysis of game events and statistics. In ten-
nis, Polk et al. [44] used a ball-based glyph to intuitively display
score information. In table tennis, considerable efficient glyphs
have been introduced to encode multivariate stroke attributes
and indicators by Wu et al. [60] and Wang et al. [49], [50], [51].
Wu et al. [57], [58] designed two glyphs for technical attributes
of badminton and tennis, respectively. While existing glyphs
cannot be directly applied to present players’ biomechanical
fingerprints, these studies provided valuable design guidelines
for us. We referred to these studies and the design guidelines
summarized by Borgo et al. [5] to design a novel glyph to
illustrate players’ fingerprints.

III. BACKGROUND

This section introduces the domain experts, the knowledge
about table tennis, the data collection procedure, and the data
processing methods.

A. Domain Experts

In this work, we collaborated with an expert from the Chinese
national table tennis team. He has served as an analyst for the
team since 2003. He also has rich training and competition
experiences and was a Level-1 table tennis player, international
referee, Level-1 coach, and coach with an A-Level certificate in
Germany. His research focuses on match analysis and training
analysis in various sports, including table tennis, badminton,
soccer, etc. We held weekly meetings with him to embody table
tennis players’ fingerprints based on the biomechanical data.

B. Table Tennis & Serve

Table tennis is a racket sport that involves two players (or
four in doubles) hitting a ball back and forth using rackets
in a rally. Players must utilize a range of techniques to re-
spond to their opponent’s strokes in order to win points. A
rally is won by a player when he/she hits the last stroke and

his/her opponent fails to successfully return the stroke. Due
to the sequential property, the most important stroke of a rally is
the first stroke, namely, the serve [65]. According to our expert,
the player who serves has an advantage over his/her opponent
since he/she can control the pace of the rally. Players tend
to prioritize improving their serving abilities over other tech-
niques and aim to develop distinctive serving styles. Notably,
some players intentionally utilize similar movements to execute
different serve techniques, which can deceive their opponents
during matches. Consequently, compared with other techniques,
serve contains more representative characteristics. Inspired by
this condition, we, together with our expert, decided to generate
a player’s fingerprint based on the biomechanical data collected
during the player’s serve.

C. Data Description

We collected the biomechanical data of 12 professional table
tennis players during their serving by using IMU devices. The
data were further processed to fit our framework.

1) Device Configuration: We used IMU devices,
WT901WIFI developed by WitMotion1 to collect the data.
Each device measures (51×36× 15)mm in size and weighs
20 g, equipped with a tiny battery (3.7 V–260 mAh). It
contains multiple inertial measurement units that can sense
the acceleration, angular velocity, angular acceleration, and
magnetic field in the x-y-z dimensions (twelve dimensions
in total). The detailed parameters of the devices are shown
in Table I. The devices came with a complementary data
collection system that supports data synchronization, device
configuration, and sensor calibration. Before data collection, we
put all devices on the table. After we opened them, the system
automatically synchronized the internal clock of each device.
Then we performed the calibration function in the system to
calibrate all inertial sensors. To reserve the most details of
players’ movements, we set the sampling frequency of the
devices to 100Hz in the system.

2) Collection Procedure: We recruited 12 professional play-
ers (6 males and 6 females), including 1 National Level player,
10 Level-1 players, and 1 Level-2 player. Three of them used
penhold grips and others used shakehand grips. All of them have
played table tennis for more than 12 years. Each player was
compensated with $10 for participating in the data collection
for an hour. In the beginning, we bound the devices to a player’s
joints. We selected the player’s upper limbs since during the
serve, players’ lower limbs must be stable enough to provide
accurate power [65]. According to previous works, the devices
were fixed to the right arm, right wrist, left arm, left wrist, and the
end of the racket [3], [49]. Subsequently, each player underwent
three distinct stages where they were required to serve the ball
using three different techniques, namely, pendulum, reverse,
and hook, as outlined in Table II. Different techniques would
lead to different types of spin (i.e., top and down). Within each
stage, the player had to serve the ball to six different placements
(3 horizontal placements × 2 vertical placements) (Table II).

1[Online]. Available: https://www.wit-motion.com/
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TABLE I
THE RANGE AND THE ACCURACY OF THE IMU DEVICES

TABLE II
THE VARIABLES WITHIN THE DATA COLLECTION PROCESS

Furthermore, for each placement, the player had to serve the ball
repeatedly 20 times using the same technique. After completing
each placement, the data collected by devices were saved in an
independent file and the player was given a one-minute break,
while a five-minute break was provided after completing a stage.
During the data collection process, we also recorded the validity
of each serve. This was important because some serve might go
out of bounds or hit the net, and would not be considered valid.

3) Data Preparation: Each player’s serve data was recorded
in 18 text files (3 techniques × 3 horizontal placements × 2
vertical placements) as described in Section III-C2. We use A =
(S1, S2, . . ., S18) to denote the data of all serves of a player. Each
text file recorded the biomechanical data of a player when he/she
served the ball with a particular technique to a particular place-
ment. As Fig. 2(A) shows, each row of the file recorded one data
frame from a device which included the timestamp, the device
ID, and the acceleration, angular velocity, angular acceleration,
and magnetic field in the x-y-z dimensions. We first transformed
the text data into time-series data T = (t1, t2, . . ., tL), where L
is the duration of each file and tl, l ∈ [1, L] denotes the data
of each timestamp. tl contains the data from five IMU devices,
namely, tl = (u1, u2, . . ., u5) (Fig. 2(A)). The data of each IMU
device, um,m ∈ [1, 5], contains the signal value of the twelve
dimensions, namelyum = (d1, d2, . . ., d12), and dn, n ∈ [1, 12]
keeps two decimal places. The transformed shape of the time-
series data is as Fig. 2(B) shows.

After the data transformation, we extracted the valid biome-
chanical data of all serves Si = (s1, s2, . . ., s20), i ∈ [1, 18]
within a file. According to our observation, When players exe-
cute a serve, there are significant and sudden changes in their
biomechanical indicators, such as the acceleration and the angle,
resulting in noticeable peaks in the collected data. Therefore,
we first refer to the method in [4] to detect the meaningful
peaks representing serves in the data. We chose the acceleration

signals (i.e., d1, d2, d3 in Fig. 2(A)) to detect peaks because
peaks in these dimensions are more representative than others.
We first calculated the sum of squares for the dimensions to
magnify peaks. Then, we use the signal.find_peaks function in
SciPy2 to detect the meaningful peaks. In this way, we found
the timestamp of all meaningful peaks P = (p1, p2, . . ., pJ )
(Fig. 2(C)), where J is the number of peaks. Then, we set a
δ to extract the data around each peak pj , j ∈ [1, J ] as the data
of a serve. Specifically, each serve starts from pj − δ and ends at
pj + δ, namely, sk = {tl|l ∈ [pj − δ, pj + δ]}, k ∈ [1, 20]. The
shape of sk is a three-dimensional tensor as shown in Fig. 2(D).

IV. METHOD

In this section, we introduce the problem definition, the design
requirements, and the detailed architecture of TacPrint.

A. Problem Definition

In this work, we used learning-based methods to generate
biomechanical fingerprints given the outstanding performance
of machine-learning models in various domains [12], [13], [63].
A straightforward solution is training an end-to-end model that
takes the biomechanical data as input and outputs the finger-
prints. However, defining the output format and annotating
players’ fingerprints for training is challenging since we did
not know the ground truth about fingerprints. Therefore, we
decided to use the features extracted by models to construct
the fingerprints.

B. Design Requirements

We organized our experts’ considerations about biomechan-
ical fingerprints and summarized the following design require-
ments.
� R1: Temporal features: Temporal features present the pace

style of a player. For example, some players serve with
a clean and efficient motion, which results in a fast serve
pace for them. On the contrary, some players’ serve motion
may last for a long time since they need to include some
deceptive moves to confuse their opponents. The pace style
can affect the opponents’ strategy when receiving the serve,
which is important during matches. Therefore, a fingerprint
should incorporate features of the time.

� R2: Spatial features: Spatial features present the body
coordination style of a player. Each player has a unique
body coordination style. For example, some players have
the most noticeable changes in their right wrist motion
when serving the ball to different placements. Besides,

2[Online]. Available: https://scipy.org/
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Some players may change their left wrist motion when
serving the ball with different techniques. The body coor-
dination style reflects the key body joints of each player,
which is important information during training. Therefore,
a fingerprint should incorporate features of body joints.

� R3: Kinematic features: Kinematic features present the
force style of a player. This style can be characterized by
kinematic metrics, such as acceleration, angular velocity,
etc. For example, some players have strong hitting force,
which can be reflected by a larger acceleration measure-
ment. Besides, some players have a strong explosive force,
which can be reflected in more dramatic changes in an-
gular velocity and acceleration. The force style is also an
important message during training. Therefore, a fingerprint
should incorporate features of kinematic metrics.

� R4: Summative features: Summative features summarize
the importance of different features (i.e., R1, R2, and R3).
For example, some players’ coordination styles can repre-
sent their movement patterns and characteristics better than
force styles. Their spatial features are more important than
their kinematic features. While a fingerprint should provide
as many kinds of features as possible, it should also enable
experts to quickly grasp the most important features. There-
fore, a fingerprint should incorporate summative features
summarizing the importance of other features.

� R5: Feature comprehensiveness: Our approach uses a
learning-based method, which means that the features ex-
tracted by the model can vary depending on the specific
tasks at hand. For instance, when the model identifies
serving techniques and positions, the extracted features
will naturally differ. Additionally, the features extracted
from the serve data of different players can also exhibit
variations. Hence, it is crucial to thoroughly consider
features under different circumstances when generating
fingerprints.

� R6: Feature visualizations: Features in our model are typ-
ically represented as vectors, making it challenging for
experts to comprehend. This becomes particularly over-
whelming when a fingerprint contains diverse types of
features. To address this issue, it is essential to develop
efficient visualization methods that can help experts ana-
lyze fingerprints effectively.

C. Framework Overview

According to the design requirements, we constructed
TacPrint, a framework for generating players’ biomechanical
fingerprints. The input is the biomechanical data of all serves of
a player. The output is the visualization of his/her biomechanical
fingerprint. TacPrint consists of four components: data recom-
bination (Fig. 3(A)), feature generation (Fig. 3(B)), feature
fusion (Fig. 3(C)), and print embodiment (Fig. 3(D)). First,
data recombination takes each single serve sk as input and
transforms it into three forms, namely spatial form, kinematic
form, and temporal form (R1, R2, R3). Then, feature generation
computes corresponding features based on the data from data
recombination by using various models (R5). Moreover, this

Fig. 4. The model architecture of the feature generation component. The data
(A) first goes through an embedding layer (B) and is fed to three BiLSTM
networks (C) with attention layers (D). The generated context vectors are fused
in a fusion layer (E) and further fed to an additional attention layer (F). Finally,
a dense layer (G) is used to output the label.

component also computes additional summative features (R4).
Afterward, feature fusion merges all feature data according to
particular models, and fuses them into one fingerprint (R5).
Finally, print embodiment visualizes the fingerprint and provides
an interactive system for exploration and analysis (R6).

D. Data Recombination

Given the three types of features in R1, R2, and R3, we
designed the data recombination component to transform the
data into the spatial form, kinematic form, and temporal form,
respectively (Fig. 3(A)). Specifically, for the three-dimensional
tensor, sk (2δ × 5× 12), we transformed it into three kinds of
two-dimensional tensors. In the spatial form, we concatenated
tl (5 × 12) in sk. The shape of this form was 5 × 24 δ. In the
kinematic form, we first transposed tl in sk. The shape of the
transposed tl was 12 × 5. Then, we concatenated the transposed
tl. The shape of this form was 12 × 10 δ. In the temporal form,
we concatenated dm (1 × 12) in tl. The shape of this form was
2δ × 60. The shapes of the three data forms are presented in
Fig. 4.

E. Feature Generation

Based on the three forms of data, feature generation aims
to generate three kinds of features. Wang et al. [49] have
tested various models for their performance in technical attribute
recognition. However, in our conditions, these models did not
meet our performance expectations since we not only needed
them to accurately identify technical attributes but also to rec-
ognize additional information to ensure R5. Due to the powerful
performance of recurrent neural networks in sequential data, we
referred to BiLSTM [19] to improve the model performance.
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Compared to regular LSTM, BiLSTM captures both past and
future context, which leads to better performance. Additionally,
the hidden states within BiLSTM are difficult for experts to un-
derstand. To solve this issue, we added the attention mechanism
to BiLSTM since it has been used for model explanation in
considerable cases [35], [40], [54].

The overall structure of the model in this component is dis-
played at the left of Fig. 4. We use IS , IK , and IT to denote the
model input in the three forms and take the temporal form as an
example to demonstrate the details of the model. In Fig. 4(A), IT
is split into 2δ vectors, namely IT = {v1, . . ., v2δ}. The length
of each vector va, a ∈ {1, 2δ} is 60. va is fed to an embedding
layer (Fig. 4(A)). The embedding layer is shared by IS and
IK . It embeds va into v′a whose length is hiddensize. After
that, v′a is fed to a BiLSTM [19] sequentially (Fig. 4(C)). In the
attention layer (Fig. 4(D)), the final hidden states (h1 and hx)
of both the forward and reverse LSTM networks are combined
by vector summation as the attention generation key. The key
is then passed through a linear layer with a Rectified Linear
Unit (ReLU) activation function. This process generates the
attention weights of the temporal form, WT . The length of WT

is hiddensize. With WT , we can obtain the attention vector
AT by implementing matrix multiplication between WT and
the output of BiLSTM whose shape is (hiddensize× 2δ). The
attention weights (WS , WK ) and vectors (AS , AK ) of the other
two forms are generated in the same way. In Fig. 4(E),WS ,WK ,
and WT are combined and fed to an additional attention layer
to obtain the summative attention weights WSUM and vector,
ASUM (Fig. 4(F)). The structure of this attention layer is the
same as the former one and the key is WT . Finally, WSUM is
fed to a dense layer and transformed to a vector with a length of
the number of labels (Fig. 4(G)).

In this way, we can obtain the spatial feature (AS), the
kinematic feature (AK), the temporal feature (AT ), and the
summative feature (ASUM ). To ensure comprehensiveness (R5),
this model is trained for 8 attribute recognition tasks suggested
by our experts. As Table II shows, the tasks include the recog-
nition of players (Player), gender (Gender), levels of the
profession (Profession), grip styles (Grip), serve techniques
(Technique), ball spin types (Spin), horizontal ball positions
(Placementh), and vertical ball positions (Placementv). Ac-
cording to our experts, these attributes are the most important
information for identifying a player’s biomechanical character-
istics.

F. Feature Fusion

Feature fusion aims to combine various features to produce
a comprehensive fingerprint (R5). The attention vector of one
serve is biased. However, preserving the vectors of all serves can
overwhelm experts. Therefore, for each model, we calculated the
average attention vectors of the four kinds of features based on
the corresponding attention vectors of all serves. In this way,
we used 32 (4 features × 8 models) average attention vectors to
construct a fingerprint of a player. In addition, we also calculated
the confidence interval of each value within the average attention
vectors.

Fig. 5. The encoding of the glyph. (A) is a radar chart encoding the summative
feature. (B), (D), and (E) use split arcs with heat maps to encode the spatial
feature, the kinematic feature, and the temporal feature, respectively. (F) is an
alternative to the glyph. (G), (H), and (I) are the fingerprints under different
filtering conditions.

G. Print Embodiment

Print embodiment provides effective visualizations for experts
to analyze fingerprints (R6). We designed a customized glyph to
encode the fingerprints. The glyph can reveal the similarities and
differences between multiple fingerprints. We further developed
a visual analytics system to help experts discover the latent
patterns within the fingerprints. The details about the glyph are
presented in Section V.

V. VISUALIZATION SYSTEM

This section introduces the interactive visualization system
within the print embodiment component.

A. System Overview

This system consists of three views, a print overview
(Fig. 1(A)), an inspection view (Fig. 1(D)), and a detail view
(Fig. 1(H)). We use blue hues, cyan hues, and orange hues
to encode spatial features, kinematic features, and temporal
features, respectively. The print overview visualizes all players’
fingerprints with steerable glyphs (Fig. 1(B)). Analysts can
adjust the glyph content on demand by using various filters and
sliders. After selecting the fingerprint of interest, the inspection
view presents detailed attention information on the four kinds
of features (Fig. 1(F)). Analysts can inspect the differences in
features between different players or tasks. In addition, analysts
can further select the particular dimensions within each kind
of feature to examine the raw biomechanical data in the detail
view (Fig. 1(I)). The system is a web-based application. We used
React.js to develop the frontend and the Django framework to
develop the backend.

B. Print Overview

The print overview (Fig. 1(A)) contains two parts: fingerprint
cards and a filter panel above the fingerprint cards.

1) Fingerprint Card: A fingerprint card (Fig. 1(B)) presents
a player’s fingerprint and his/her profile information. A new
glyph is designed to encode a player’s fingerprint. First, a ring
is divided into three equal parts (120◦ each) to encode spatial
features, kinematic features, and temporal features in blue, cyan,
and orange, respectively (Fig. 5). Since each kind of feature
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contains eight attention vectors, each arc is further divided into
eight arcs and each arc encodes the value within an attention
vector by a heat map (Fig. 5(B), (D), (E)). To facilitate the
distinction of different features, the color hue of each heat map
remains the same and the saturation is used to encode the value.
The dimensions within an attention vector are grouped by using
whitespace for better differentiation (Fig. 5(C)). For example, in
Fig. 5(B), the arc presents the attention vector of the technique
recognition model within spatial features. Most of the attention
is paid to the racket and the left arm receives the least attention.
In the center of the ring, a 32-dimensional radar chart is placed
to display the summative features. The three sections of the
radar chart corresponding to the three different features are
encoded by the same color schemes for features Fig. 5(A). An
alternative of the glyph is as Fig. 5(F) shows. The alternative
unfolds the arc and encodes the summative attention with bar
charts on the corresponding attention vectors. We did not adopt
this design for two reasons. First, the alternative is too long to
be perceived as a whole, unable to provide a holistic view of a
fingerprint. Therefore, inspired by DG10: Intuitive mapping
based on semantics. [5] and the design in Weng et al. [53],
we used the metaphor of fingerprints and decided to use circular
glyphs to augment the overall coherence. Second, since there are
32 attention vectors in a fingerprint, visualizing these vectors
with heat maps horizontally makes it difficult to locate the
same dimension of features among many fingerprints. Therefore,
according to DG5: Redundant mapping of variables. in Borgo
et al. [5], we use two visual channels, the position channel and the
orientation channel to distinguish different features of different
models in our glyph.

With the glyph, we place icons at the four corners of a card
to encode a player’s profile information (Fig. 1(B)). Starting
from the top-left corner and moving clockwise, we have 1)
an icon in the shape of a palm for the player’s handedness
(i.e., right palm: right-handedness, left palm: left-handedness),
2) a racket icon with different directions for the player’s grip
type (i.e., horizontal racket: shakehand grip, slanted racket:
penhold grip), 3) the professional level abbreviations for the
player’s professional level (i.e., NL: national-level, L1: Level-1,
L2: Level-2), and 4) a gender icon for the player’s gender.
For example, Fig. 1(B) presents the fingerprint card of a fe-
male right-handed player who uses a shakehand grip and is a
Level-1 player.

Interactions: Analysts can click a group of arcs to select
all corresponding features for further analysis. For example, if
analysts select the arcs in Fig. 5(B), the arcs in Fig. 5(D) and
5(E) will also be selected and highlighted as Fig. 1(C) shows.
The selected task of one player will be displayed in the inspection
view.

2) Filter Panel: The filter panel at the top of this view enables
analysts to adjust the glyphs of fingerprints from two perspec-
tives. The filters in the first row support filtering based on model
tasks. These filters can change the number of tangential arcs
(Fig. 5(G)). The filters in the second row support filtering based
on attention dimensions. These filters can change the number of
radial arcs (Fig. 5(H)). Fig. 5(I) presents a fingerprint filtered by
both kinds of filters.

Interations: All filters except for the slider support multiple
selections. Analysts can select tasks and dimensions on demand.
For the dimension filtering of temporal features, analysts can
use the slider to choose the time period to be displayed in a
fingerprint.

C. Inspection View

The inspection view (Fig. 1(D)) presents the details of the
features selected in the print overview. For example, Fig. 1(F)
presents the features selected in Fig. 1(C). Each kind of feature
is presented with a separate visualization method. The details
are as follows.
� Summative charts The summative feature is a three-

dimensional vector. We use a pie chart to show the weight of
the three kinds of features. The center of the pie chart is the
model task. For example, the pie chart in Fig. 1(F) presents
the summative features generated by the technique recog-
nition model. It represents that the model pays the most
attention to temporal features when recognizing Player 2’s
serve techniques.

� Spatial charts We use a bar chart with error bars to present
the spatial feature. The lines with dark blue are the mean
values and the rectangles indicate the standard confidence
intervals. For example, in Fig. 1(F), the spatial feature
indicates that the model pays the most attention to Player
2’s racket.

� Kinematic charts. We use a similar visualization method to
present the kinematic feature. For example, in Fig. 1(F), the
kinematic feature indicates that the model pays the most
attention to Player 2’s magnetic field data, especially the
z-axis.

� Temporal chart. We use a line chart with a confidence
band inspired by Deng et al. [14] to present the temporal
distribution of weights. For example, in Fig. 1(F), the two
peaks indicate that most of the model’s attention is focused
on the middle period.

Interactions: Analysts can select two dimensions in the spatial
chart or the kinematic chart to compare the raw data of the
corresponding dimensions in the detail view (Fig. 1(H)). They
can click on the corresponding bars in the charts and the chosen
dimensions will be highlighted. For example, in Fig. 1(E) and
(G), the right wrists within the spatial charts of Player 1 and
Player 2 are selected.

D. Detail View

In the detail view (Fig. 1(H)), we show the biomechanical
data of serves based on the time series. For example, Fig. 1(H)
presents the biomechanical data of the right wrists of Player
1 and Player 4 (Fig. 1(E), (G)). Since there are many serves
of a player, the data of each serve is not presented separately.
We aggregate the data of serves with the same technique and
placement by computing the mean value. Analysts can change
the technique and placement by using the two buttons at the
top of the detail view. By examining the biomechanical data,
analysts can verify the findings in the inspection view.
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TABLE III
THE MEAN AND STANDARD ERROR OF THE ACCURACY (10-FOLD) OF DIFFERENT MODELS DURING THE EXPERIMENT

E. Usage Scenario

Here is a usage scenario where an analyst uses the system
to compare the fingerprints between different players. He first
examines the print overview (Fig. 1(A)). He browses the fin-
gerprints of all players. He finds that the fingerprints of the
players using penhold grip are quite different from those of
the players using shakehand grip, especially in the spatial and
kinematic features. To present the difference, he filters out
several features that are similar among all fingerprints. Then,
he selected features generated by the same model tasks from
the fingerprints of three players. The details of the selected
features are displayed in the inspection view (Fig. 1(D)). In
the inspection view, he first examines the summative features
to identify the most important feature types. He finds that the
kinematic feature is the most important. He investigates the at-
tention distribution within kinematic features by comparing the
mean and confidence interval inside the chart of the kinematic
feature. He selects one dimension in the charts of two players
to observe the raw biomechanical data of the two players in the
detail view (Fig. 1(H)). He examines the data of serves with
different techniques and placements by using the filters at the
top of the detail view. After checking the raw biomechanical
data, he validated the differences in the fingerprints.

VI. EVALUATION

We designed a quantitative experiment to verify the model
design in feature generation Fig. 3(B). In addition, we conducted
a case study to evaluate the usability of the system. After the
study, we interviewed the analysts about their feedback on the
system. We also interviewed the players analyzed in the study
for validation.

A. Model Evaluation

Apparatus: We compared our model (BiLSTM-T in Table III)
with 6 alternatives. Wang et al. [49] have mentioned six advanced
classification models (i.e., LSTM [22], Random Forest [41],

Deep Forest [66], XGBoost [7], LightGBM [30]) for technique
recognition. We added Random Forest, LSTM, and LightGBM
to our alternative list. We removed Deep Forest since it is based
on bootstrap aggregating, similar to Random Forest. Moreover,
Random Forest performed better than it did in the previous study.
Similarly, we selected LightGBM instead of XGBoost. Since our
model is based on BiLSTM [19], we also added BiLSTM to the
alternative list. In addition to the four alternatives, our model has
another two alternatives, BiLSTM-S and BiLSTM-K. These two
models have the same architecture as ours. The only difference
is the key used to generate ASUM in Fig. 4(F). Our model uses
WT , while BiLSTM-S uses WS , and BiLSTM-K uses WK .

Data: We recruited 12 professional players to collect the data
for the experiment. Details can be referred to in Section III-C2.
We set δ to 75 during data preparation (Section III-C3) since
150(2δ) frames (Fig. 2(C)) are sufficient to encompass the data
of a serve according to the previous work [49]. Totally, we used
the data of 4319 serves.

Procedure & Result: We use 8 recognition tasks (Table III)
to evaluate the performance of each model. To obtain a
reliable evaluation result, we employed a 10-fold cross-
validation method. We calculated the ratio of correctly rec-
ognized samples to the total number of samples as the accu-
racy. The mean and the standard error of accuracy are pre-
sented in Table III. According to the result, our model per-
formed better than other models in recognizing horizontal
ball positions (Acc : 67%, Std : 1.4%), vertical ball positions
(Acc : 95.5%, Std : 1.1%), ball spin types (Acc : 96.1%, Std :
0.8%), grip styles (Acc : 99.8%, Std : 0.2%), and gender (Acc :
99.7%, Std : 0.2%). Especially when recognizing horizontal
ball positions, our model performed much better than others. Be-
sides, BiLSTM performed better than others in the tasks of rec-
ognizing serve techniques (Acc : 99.9%, Std : 0.2%) and play-
ers (Acc : 99.5%, Std : 0.3%). In addition, when recognizing
levels of the profession, our model (Acc : 100%, Std : 0%) per-
formed equivalently to the basic BiLSTM (Acc : 100%, Std :
0%). Therefore, in summary, the overall performance of our
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Fig. 6. Insight 1: (A) is the sound fingerprint of Player 2. (B) and (C) are filtered
fingerprints of Player 5 and Player 8. (D)∼(I) displays the detailed information
of the features generated by technique recognition and horizontal ball position
recognition models of Player 5.

model is still relatively prominent. It can handle various recog-
nition tasks.

B. Case Study

We conducted a case study with two analysts who have served
the Chinese national table tennis team for more than three years.
The data of the case study was the fingerprints of the 12 players
we hired during data collection. We replaced the players’ names
with Player 1–12 to protect their privacy. We set δ to 75 to
generate the fingerprints. We first introduced the visualizations
and system interactions to the analysts. Then, we finished the
case study together.

1) Insight 1. Redundant Movements on the Left Wrist: We
first examined the fingerprints of all twelve players. According
to the radar charts of each fingerprint, we found that the fin-
gerprints of Player 2 and Player 5 were almost entirely focused
on spatial features and kinematic features (Fig. 6(A), (b)). This
indicates that the body coordination style (R2) and force style
(R3) of these two players are the best representations of their
biomechanical characteristics. However, their pace styles do
not have any unique features since almost no attention to their
temporal features. Therefore, we decided to focus on one of the
two players, Player 2. We found that in the spatial features, the
models’ attention was basically focused on the left and right
wrists of Player 2 in all of the model tasks (Fig. 6(B)). This
aroused the curiosity of analysts. They wondered whether this
pattern only occurred in Player 2’s fingerprint. Therefore, we
filtered out all other dimensions of the spatial features except
for the two wrists by using the filters. We found that in addition
to Player 2, Player 8 also had the same pattern (Fig. 6(C)).
Analysts examined the profile information of the two players

and found that they both used penhold grips, which was different
from most of the other players. The analysts explained that this
pattern is caused by the different playing styles of different grip
types. Compared to players using shakehand grips, players using
penhold grips had more movements on their right wrists when
serving the ball with different techniques, ball positions, and
spin types.

However, after we further examined the fingerprints of the two
players, we found that the models’ attention was not entirely paid
to the right wrist. When recognizing serve techniques, horizontal
ball positions, and levels of the profession, the attention was
focused on the left wrist (Fig. 6(B)). Analysts said that generally
speaking when a player changed his/her serve technique and
ball position, the differences in his/her movements should be
focused on the right wrist. The differences in movements of
the left wrist should be relatively less. This was because the
player needed to avoid unnecessary movements to confuse the
opponent. However, the movements of the left wrist of these two
players caught the attention of the model. Analysts concluded
that the movements of these two players when serving the ball
were not perfect enough. The left wrist had too many redundant
movements which they needed to reduce during their training.

We further selected the spatial features generated by the
technique recognition model and the horizontal ball position
recognition model. In the inspection view, we found that both
models indeed focused more on spatial and kinematic features
according to the two donut charts (Fig. 6(D), (e)). In the spatial
feature, attention to the left wrist was significantly higher than
attention to other body joints, including the racket (Fig. 6(F),
(G)). In the kinematic feature, attention to the magnetic field was
significantly higher than attention to other kinematic indicators
(Fig. 6(H), (I)). The analysts explained that changes in the mag-
netic field reflect changes in the range of the player’s movements.
The high attention indicated that Player 2’s range of movements
changed significantly when using different serve techniques,
and these changes are reflected in the left wrist. To verify this
conclusion, we selected the Y-axis of the magnetic field in both
models to examine the raw biomechanical data of different body
joints on the Y-axis of the magnetic field in the detail view.
After we examined the data of different serve techniques and
horizontal ball positions, we confirmed the analysts’ reasoning.

2) Insight 2. Redundant Movements before/after Hitting:
After investigating the spatial features and kinematic fea-
tures, we decided to analyze the temporal features within fin-
gerprints. We examined the temporal features of all players
and found that players’ temporal features are quite diverse.
Therefore, the analysts suggested filtering out temporal features
by tasks. We unselected the tasks unrelated to technical recogni-
tion in the filters. After filtering, we found that in most players’
temporal features, the models’ attention is mainly focused on the
middle period of the serve process (Fig. 7(A)). This indicated
that the biomechanical data during the period when the racket
contacted the ball was the key for the model to distinguish
different techniques and levels of the profession. The analysts
stated that the players with this pattern must be high-level players
because they do not conduct unnecessary movements at any time
other than when hitting the ball.
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Fig. 7. Insight 2: (A), (B), and (C) present the temporal features of Player
7, 10, 4, and 6. (D), (E), (F), and (G) present the spatial features and temporal
features generated by spin type recognition models of Player 4 and Player 6,
respectively.

We also found some exceptions, such as Player 4 (Fig. 7(B)).
The fingerprint of Player 4 shows that in the task of recog-
nizing spin types, the model’s attention mostly focused on the
beginning of the serve process (the colors of the inner arcs are
darker), which is the stage when the player tossed the ball. We
selected this temporal feature and found a peak in the beginning
of the serve in the inspection view (Fig. 7(E)). The analysts
explained that the player’s movements mainly changed before
the ball was hit by the racket when serving with different spin
types. Movements in this stage often had a subtle impact on the
spin, as the spin was mainly determined by the contact between
the racket and the ball. Therefore, it could be inferred that the
quality of the spin of the player’s serve was not high enough. In
addition, the differences in movements during this stage could
also provide hints for the opponent, allowing them to predict
the spin type of the incoming serve in advance. This was an
unfavorable condition for the player in a match. In the spatial
feature, the model’s attention focused on the left wrist (Fig.
7(D)), which was also unfavorable according to Insight 1.

Moreover, we found several examples where attention was
concentrated on the latter half of the serve process. For instance,
when the model recognized Player 6’s spin types, the attention
became more focused at the end of the serve process (Fig.
7(C)). We selected it, and in the inspection view, the line chart
indeed presented a continuous upward trend (Fig. 7(G)). The
analysts explained that the player’s follow-through movements
changed depending on the spin types of the ball. Such a situation
was also unfavorable for a high-quality serve. Player 6 should
improve it in subsequent training. We also found that the error
bar of this player’s spatial feature is quite long (Fig. 7(F)),
indicating that the model’s attention changes frequently when

recognizing the player’s spin types. This indirectly indicated
that the coordination of the player’s body joints was not very
stable during each serve, which should be to be enhanced in
terms of stability in future training.

C. Feedback

The analysts thought highly of the biomechanical fingerprints.
We summarized their comments as follows.
� Significance This work introduces a novel method to gener-

ate the biomechanical fingerprints of table tennis players.
The fingerprints can reflect players’ habitual movement
patterns which are important for skill improvement. More-
over, the fingerprint can enable coaches to discover players
with similar/different playing styles, which can help create
suitable matchups during training.

� Embodiment The visualization of fingerprints provides an
efficient way for analysts to explore the fingerprint of each
player. The use of the fingerprint metaphor vividly displays
the uniqueness of each player as well as his/her similari-
ties with others. The filters provide enough flexibility for
analysts to adjust the presentation of the fingerprints on
demand.

� Data diversity The diversity of the data used for fingerprint
generation can be enlarged. In this work, all fingerprints
were generated only based on serves. Although serves
contain the most representative characteristics of a player,
the fingerprint would be more comprehensive if it could
include other strokes.

We present the insights in the case study to the corresponding
players (i.e., Player 2, 4, 6). Player 2 admitted that he had
some redundant movements on his left wrist. He was used
to these movements and needed a long time to reduce such
movements. Player 4 said when she used different spin types
to serve, she would adopt different ways to toss the ball. This
habit was difficult to change. Player 6 said she was not aware of
her serve movements since her playing strategy did not require
high-quality serves.

VII. DISCUSSION

Application The biomechanical fingerprint of a player can
play an important role in various situations. First, the fingerprint
can help coaches discover the critical movements that influence
players’ performance during training. With this information,
coaches can customize effective training plans for each player.
Second, the fingerprint can help coaches identify talented play-
ers. Conventionally, coaches choose talented players based on
their experience. Sometimes, it takes several rounds of training
and matches. With the fingerprint, talented players can be easily
detected since the coaches can clearly know the strengths and
weaknesses of each player. If a player’s fingerprint closely
resembles that of top players, it indicates a significant potential
for talent. Additionally, the fingerprint can also be used to
construct virtual players in the metaverse for match simulation
and prediction.

Generalizability TacPrint can be extended to a wide spectrum
of sports (e.g., tennis, basketball, soccer) that involve diverse
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movements and actions. First, we can bind IMU devices to
the body parts involved in key technical movements to capture
biomechanical data during training. For example, in soccer, the
devices can be fixed on players’ lower limbs to collect data
during passing, shooting, dribbling, etc. In this step, challenges
lie in the characterization of key technical movements repre-
sentative body parts for data collection. Extensive collaboration
with coaches and players and trial and error are necessary. Then,
with the data, the model’s recognition tasks can be tailored to
the specific actions and player profiles involved in each sport.
In this step, challenges lie in the model performance due to the
variations in data size. For example, actions in basketball or soc-
cer may involve longer durations and more complex movements
compared to a serve in table tennis. Models should be refined
based on specific sports. Finally, the fingerprints can be analyzed
in the system by adjusting the icons on the fingerprint card.
The icons should be redesigned according to the players’ profile
information in particular sports. For example, in basketball, we
do not display a player’s handedness and grip type. Instead,
we may need to display his/her role (e.g., forward, guard) and
height.

Limitation & future work This work has two limitations.
First, the fingerprint is generated only based on the serve data.
According to the analysts, other strokes besides the serve are
also valuable when describing players’ characteristics. In the
future, we will combine the data of other strokes to enrich
the fingerprint. Second, the device can influence players’ per-
formance due to its size and weight. In the future, we need
unobtrusive wearable devices to reduce the influence. Moreover,
if we combine other types of strokes into the fingerprint, more
devices should be prepared to collect the movements of other
body joints such as ankles, knees, and legs.

Reflection We added the attention mechanism to enhance
the model interpretability. However, domain experts still have
difficulties understanding the attention vectors of the models due
to their abstract definitions and complicated calculation meth-
ods. Therefore, visualization is indispensable in promoting the
application of machine learning models in various fields. How-
ever, complex visualizations would increase experts’ learning
curves, eliminating the convenience brought by visualization.
Therefore, we used basic visualization methods to construct the
new glyph of the fingerprint and display the details of different
types of features, facilitating experts’ understanding.

VIII. CONCLUSION

In this work, we proposed the definition of the biomechan-
ical fingerprint and developed a framework, TacPrint to help
the experts generate and analyze players’ fingerprints. TacPrint
takes the biomechanical data collected by IMU devices as input
and generates spatial features, kinematic features, and tempo-
ral features of a fingerprint by using the BiLSTM network
with attention layers. We further designed a novel glyph and
developed an interactive system to support the exploration of
the fingerprints. With the system, we conducted a case study
based on table tennis data and discovered valuable insights
about players’ performance enhancement during the training. In

addition to table tennis, TacPrint can also be extended to other
sports such as tennis and basketball to help improve players’
performance, prevent potential injuries, identify talents, and
develop personalized training programs. In the future, We will
continue to explore the generalizability of TacPrint in other
sports and biomechanical analysis fields.
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