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Smartboard: Visual Exploration of Team Tactics with LLM Agent

Ziao Liu, Xiao Xie, Moqi He, Wenshuo Zhao, Yihong Wu, Liqi Cheng, Hui Zhang, and Yingcai Wu

Abstract—Tactics play an important role in team sports by guiding how players interact on the field. Both sports fans and experts have
a demand for analyzing sports tactics. Existing approaches allow users to visually perceive the multivariate tactical effects. However,
these approaches require users to experience a complex reasoning process to connect the multiple interactions within each tactic to
the final tactical effect. In this work, we collaborate with basketball experts and propose a progressive approach to help users gain a
deeper understanding of how each tactic works and customize tactics on demand. Users can progressively sketch on a tactic board,
and a coach agent will simulate the possible actions in each step and present the simulation to users with facet visualizations. We
develop an extensible framework that integrates large language models (LLMs) and visualizations to help users communicate with
the coach agent with multimodal inputs. Based on the framework, we design and develop Smartboard, an agent-based interactive
visualization system for fine-grained tactical analysis, especially for play design. Smartboard provides users with a structured process
of setup, simulation, and evolution, allowing for iterative exploration of tactics based on specific personalized scenarios. We conduct
case studies based on real-world basketball datasets to demonstrate the effectiveness and usefulness of our system.

Index Terms—Sports visualization, tactic board, tactical analysis

1 INTRODUCTION

Tactics can be defined as a series of planned actions of multiple players.
Both experts and sports fans have a strong need to understand and
analyze tactics. Specifically, for sports fans, analyzing tactics can help
them gain insights into the intricacies of the sport, such as how teams
strategize, adapt, and compete against each other, thereby improving
their own skills and performance in the sport and their engagement
when watching games. Despite the great demand, analyzing tactics is
challenging since it requires significant efforts to process the data and
substantial domain knowledge to obtain insights from the data.

Advanced techniques have been successfully employed to reduce
the efforts of data processing, such as extracting data from videos
[24, 35] and detecting data patterns [32, 34, 48], etc. Consequently,
the bottleneck in tactical analysis, especially for play design, lies in
making sense of the data [57]. Visualization-based approaches [2, 55]
are therefore introduced to address this problem. These approaches
usually design statistical models based on sports domain knowledge and
use these models to evaluate the effectiveness of tactics quantitatively.
Different forms of visualizations are further designed and utilized to
help users better understand the model results. While these approaches
are valuable, it is still difficult for users to obtain insights from the
data [53]. This requires a complex reasoning process to connect the
multiple interactions within each tactic to the final tactical effect.

We propose to utilize Large Language Models (LLMs) and visual-
izations to address this problem. LLMs have demonstrated powerful
capabilities in understanding complex text descriptions [33] and reason-
ing with spatio-temporal data [22]. This suggests that LLMs have great
potential not only to comprehend complex tactical text descriptions
but also to provide prospective insights through tactical reasoning [6],
which is beyond the ability of traditional models. In this work, we
choose basketball, one of the most representative sports, as our scenario.
By collaborating with basketball experts, we propose an LLM-based
interactive visualization system, Smartboard. Users can sketch on a
tactic board to define the tactic of interest. They can further specify
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the scenario of tactics, e.g., the score difference or the specific players
and teams, through visualizations. An LLM-based coach agent will
receive the multi-modal input and can simulate the following situations
on the court using its knowledge of basketball tactics. The output of
the coach agent will be transformed into visualizations and users can
progressively interact with the agent to understand the formulation
of a tactic and its possible variants. Smartboard significantly reduces
the required knowledge for users since the coach agent can help users
conduct complex reasoning tasks in tactical play design and analysis.

However, we encountered two main challenges during the devel-
opment. The first challenge is to propose a method to use LLMs for
tactical analysis in play design. The diversity in basketball experts’
tactical understanding makes customized input requirements necessary.
Moreover, to enhance the realism of the simulation environment, the
outcomes should present a coherent and comprehensible sequence of
decision-making steps. However, the limited domain knowledge of
LLMs substantially affects the quality of the simulation results, making
this task challenging. The second challenge is to provide effective
exploration, recommendation, and explanation for tactical play design.
Experts aim to explore the simulation scenarios as thoroughly as pos-
sible. However, anticipating every conceivable scenario within the
simulation process is difficult [20]. It is necessary to provide recom-
mendations based on the current context [52]. Moreover, since LLMs’
output modality is limited to natural language [68], it is difficult for
users to extract key information from a large amount of output text
quickly. Therefore, transforming text information into visualizations
and providing explanations are particularly important. Designing an
agent-based interactive visualization system for exploration, recommen-
dation, and explanation in tactical play design is highly challenging.

Therefore, we propose an interaction framework to address the first
challenge. We use prompt engineering to enhance the knowledge, inte-
grate controllable external information to meet experts’ personalized
needs and leverage the chain-of-thought (CoT) [58] approach to guide
results. Based on the framework, we design an interactive system to
tackle the second challenge. Users can freely sketch tactics and con-
vey tactical intentions through this system. Then, they can analyze
the recommended results for comparison and select them to advance
the next steps in the tactical simulation. At any stage of the analysis,
users can explain the results. Through this iterative process, users can
continuously explore until they obtain a satisfactory complete tactic.

In summary, our main contributions are as follows:
⋄ An extensible framework supports complex interactions with LLM

agents for basketball tactical analysis.
⋄ An agent-based interactive visualization system that supports users

in iteratively conducting tactical analysis for play design through
exploration, recommendation, and explanation.

⋄ Two case studies that demonstrate the effectiveness and usefulness
of our system.
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2 RELATED WORK

This section presents related studies from two perspectives, namely,
sports visualization and LLM application in visualization.

2.1 Sports Visualization
Visualization techniques have been widely used in the analysis of
different sports such as soccer [2,3,49,65,67], baseball [7,26,37], racket
sports [44, 45, 54, 60, 61, 64], ice hockey [43], ski [47] and rugby [19].
Numerous specialized visualization systems have emerged, tailored to
specific data types and analytical needs [9]. For example, SoccerStories
[41] provided a series of coordinated visualizations for the analysis
of soccer data. VIRD [28] introduced an end-to-end immersive tool
for analyzing match videos, enabling coaches to interactively analyze
spatio-temporal and pose information from various perspectives in
badminton match video analysis. Perin et al. [42] have provided a
comprehensive overview of the most effective visualization techniques
and analytical methods suitable for each kind of sports data.

In basketball, most works focused on designing visualization sys-
tems to facilitate the analysis task. GameViews [71] and GameFlow [4]
designed visualizations to present various levels of basketball gameplay.
In analyzing player performance, Buckets [1] and HoopInSight [11]
provided insightful visualizations for shooting performance, enabling
comparative analyses in varied contexts. In team analysis, PluMP [51]
enhanced plus-minus values to a team-wide perspective, providing a
visualization interface for in-depth exploration. OBTracker [63] intro-
duced an interpretable off-ball movement model that assesses individual
contributions, aggregated to summarize team-wide movement patterns,
and employed an interactive visual analytics system for result explana-
tion. For training purposes, VisionCoach [30] introduced an immersive
virtual reality system focused on visual training for passing from the
player’s perspective. In addition to analysis, a set of works focused on
creating storytelling visualizations for basketball data. For example,
Chen et al. [5, 73, 74] improved the sports video viewing experience
by enabling users to edit special visual effects, generating augmented
videos based on user actions. Lin et al. [29] explored the design space
of embedded visualizations to augment basketball viewers’ experience.
Fu et al. [10] developed a visualization system that aids writers and
journalists in crafting compelling, data-driven basketball stories. These
works provide guidance for our visualization design. However, the
main challenge, i.e., coordinating with LLMs using visualizations for
conducting basketball tactic analysis, has not been addressed.

Simulation tools like BasketballGAN [16] and Basketball Flow [25]
are also closely related to this work. They modeled defensive strategies
based on offensive plays sketched by users, yet they lacked detailed
visualizations for thorough analysis and explanation of simulations.
Furthermore, simulations based solely on players’ trajectory data failed
to replicate the complexity of actual game scenarios.

2.2 LLM Application in Visualization
Large language models (LLMs) have shown great performance in var-
ious domain tasks by combining various types of data [14]. Despite
its usefulness, it is hard for users to accurately convey their intentions
to LLMs using only natural language when tackling complex tasks.
Hence, creating efficient visualization interfaces and interactions to
help users better understand, control, and improve LLMs’ outputs is
urgently needed [12]. For example, ChartSpark [66] proposed a vi-
sualization system to help users obtain high-quality data charts by
interactively optimizing prompts. To ensure that LLMs can accomplish
certain tasks based on predefined knowledge, C2Idea [15] integrates
design principles to prompts, allowing LLMs to create color schemes
that follow these principles. To help users better understand LLM
outputs and how they work, CommonSenseVis [56] developed an inter-
active visualization system to explain and explore the common sense
reasoning abilities of natural language models. A set of research fur-
ther treats LLMs as agents to support the co-analysis and show that
LLM agents can assist in processing complex information [62] and
facilitating the decision-making process [70]. However, the application
in facilitating sports analysis, particularly in basketball tactical anal-
ysis, is less explored. Despite the capability of LLMs in interpreting
spatial-temporal data [21], enabling experts to effectively explore and
analyze tactics with the aid of LLMs poses a challenge. To bridge this

gap, we proposed an extensible framework that allows users to fully
express their tactical intentions, including complex spatio-temporal
context information, to the agent with visualizations.

3 BACKGROUND

In this section, we first introduce the relevant concepts, followed by
a detailed description of the interviews and a summary of the require-
ments. Finally, we introduce the dataset. Additionally, we provide a
glossary to explain the basketball terms and tactics presented in our
paper. Please refer to our supplemental material for more details.

3.1 Background and Concepts
Basketball is a competitive sport between two teams, each composed of
five players, battling on a rectangular court to score points. Basketball
tactics define a series of actions for players that can create opportunities
to win the game. Related concepts are defined as follows.

• A tactic board is a tool for drawing and displaying basketball
tactics. It facilitates understanding tactical execution between
coaches and players, serving as a key to tactical communication.

• Player roles refer to the responsibilities of each player in a tactic,
including point guard, shooting guard, small forward, power
forward, and center. Each role carries distinct contributions to the
tactical execution. Players may switch roles as tactics demand.

• Game contexts are external factors that influence tactical effects,
such as game period, score gap, remaining time, etc.

• A situation is a specific scenario within tactical execution. In this
paper, the situation is used to retrieve similar ones from datasets.

3.2 Interviews
We collaborated with six basketball experts for a year to develop an
interactive system for tactical play design. These experts included two
basketball coaches (E1 and E2, both with years of coaching experience),
two basketball analysts (E3 and E4, both with extensive experience in
tactical analysis), and two PhDs majoring in sports science (E5 and E6,
both with distinguished backgrounds as players in elite teams).

Interview 1. To gain a deep understanding of the workflow in-
volved in tactical analysis, especially for play design, we engaged in
an hour-long semi-structured interview with our experts. According
to our experts, tactical play design unfolds in an iterative loop. First,
they analyze real game videos and sketch tactical setups on the tactic
board. These setups are then applied in training sessions to evaluate the
effectiveness and usefulness of the tactical execution. After analyzing
the results, they refine or advance the tactic as needed. This process is
repeated until the experts achieve a satisfactory tactic.

Experts encounter numerous challenges during the tactical play de-
sign process. They usually need to analyze videos to refine tactics
setups, which is a time-consuming task. Moreover, frequent changes in
training can lead to confusion and frustration, which may decrease play-
ers’ motivation and persistence. While experts have attempted to use AI
models to predict tactical execution outcomes, it remains challenging
for them to express their specific tactical intentions to these models.
For instance, E1 mentioned that it’s difficult to specify the opponent’s
particular defensive tactic during the tactical simulation. Furthermore,
E2 and E3 stated that the iterative analysis process requires frequent
and effective interactions with the model. However, they identified
gaps in their ability to adjust the model’s parameters effectively [13].
Experts tried to use ChatGPT [38] to optimize the tactical analysis
experience but also encountered issues. These prompted us to design
an LLM-based interactive system to address these challenges.

Interview 2. Based on the domain challenges, we developed a sys-
tem prototype and conducted a follow-up interview with each expert.
We focus on their expectations about utilizing LLMs to assist with tac-
tical analysis. E1 and E4 mentioned that integrating more information
can help them in deploying the details of tactics. For example, they can
better tailor the tactic to the players’ habitual movements. E3 and E5
pointed out that displaying the reasoning process of tactics could assist
them in analyzing changes in different situations such as how tactics
evolve in the current context? and why such changes are necessary?
E2 and E6 emphasized the significance of using natural language for
interaction with the agent. They believed that it would be effective to
convey their specific requirements precisely during the analysis.
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Fig. 1: System framework. (A) Multi-modal input to represent tactical intentions. (B) Integration of specific domain knowledge to augment LLM agent
execution. (C) Prompt generation based on multi-modal input to guide LLM agent execution. (D) Additional fine-grained requirements to control the
reasoning process. (E) The step-by-step reasoning process of the LLM agent.

3.3 Requirement Analysis
Based on the interviews, we summarized six requirements that fol-
low the workflow of tactical analysis for play design, including three
perspectives: tactical setup, simulation, and evolution.
• Comprehensive Tactical Setup.

R1 Enhance sketching with guidance. The setup on the tactic
board requires guidance, such as tactical decisions and sugges-
tions. This guidance streamlines the sketching process, enabling
experts to explore strategic options more effectively.

R2 Integrate contextual information. The success of a tactic is
influenced by various factors, such as physical conditions, histor-
ical performance, and behavioral patterns. Integrating broader
contextual information can provide experts with a detailed back-
ground for tactical setups.

• Reasonable Tactical Simulation.
R3 Display various options and variants. Tactics vary by situation.

For example, a pick-and-roll can transform into a pick-and-pop
based on different choices. Therefore, experts need to under-
stand a broader range of variations to grasp the applicability and
potential outcomes of tactics in specific contexts.

R4 Present the reasoning process. Tactics are shaped by many
factors. For instance, a tactic may change in the final minutes.
Thus, experts should explore the thought process behind tactics
for a better understanding of their pros and cons.

• Controllable Tactical Evolution.
R5 Control with natural language. Experts often use natural

language to communicate and share ideas in tactics analysis.
For example, they specify a tactical goal of creating space for a
three-pointer. Thus, utilizing natural language for control should
encompass the whole process, facilitating experts to simplify
and refine the expression of their requirements.

R6 Adjust based on user feedback. Experts have unique insights
and often need to modify or optimize tactics. Therefore, the
system’s ability to adjust based on user feedback helps experts
efficiently refine and evolve their tactics.

3.4 Data Description
We use an open-source dataset furnished by STATS SportVU [31],
which documents 631 NBA regular season games of the 2015-16 season.
Each game is recorded with both event and tracking data. The event
data encompass critical moments such as shots, fouls, and assists, along
with their contextual information. The tracking data reveal the precise
spatial locations of both players and the ball, captured at a rate of
25 frames per second. These data specifics are presented in Table 1.
Additionally, we collect the height and weight of each player via the
NBA api, enhancing our analysis with the physical attributes of the
players involved.

Table 1: Basketball Data Description

Data Description
Event Type Events such as pass, dribble, shot, etc.
Off / Def Team Offensive and defensive teams in the event.
Score Score difference between Off and Def team.
Period Every twelve minutes of the game.
Time Remaining time in the current period.
Player All Players on the court.
Player Trajectory Player spatial locations {(Xi,Yi), ...}.
Ball Trajectory Ball spatial locations {(Xi,Yi), ...}.

4 FRAMEWORK

Based on the requirements, we propose a framework (Fig. 1) to enhance
users’ interaction with LLMs in basketball tactical play design. This
framework is structured into three key parts: First, the user input allows
users to provide detailed information (R1, R2, R5). Next, the model
output enables the LLM agent to generate outcomes based on user
needs (R3, R4). Finally, the iterative exploration ensures users control
every stage using feedback in the analysis process (R6).

4.1 User Input
Contextual information provides essential support for fine-grained tac-
tical analysis. To help users comprehensively convey information and
intentions to the LLM agent, we introduce the sketching stage, fur-
ther facilitating information integration (Fig. 1(A, D)). This creates a
flexible interactive environment for basketball tactical play design.

Visualization improves user input from a data perspective. Text,
charts, and tables are basic forms of visualization. They can represent
various types of data, making it easier for users to understand. Users
can customize the scenario for tactical analysis by interacting with the
visual elements. Visualizations provide solid data support by integrating
broader contextual information into the tactical setup (R2).

Tactic board offers users an intuitive platform for tactical setup. It
enables the visual communication of key tactical information, such as
player roles, trajectories, and actions. Sketching aligns with users’ pref-
erences (R1), providing a method of expressing tactical information.

Natural language provides a user-friendly interaction method (R5).
We categorize natural language into three types, which serve as addi-
tional input to enrich background descriptions, specify tactical require-
ments, and provide feedback comments. Natural language enhances
the flexibility of interaction between users and the model, ensuring that
the analysis process aligns more closely with the users’ intentions.
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4.2 Model Output
Requirement-driven outputs (Fig. 1(E)) are essential throughout the
tactical exploration process. We enable the LLM agent to reason step by
step to understand the intricate factors provided by users. Furthermore,
We summarize agent’s task categories based on various needs.

Reasoning requires the LLM agent to conduct a top-down analysis
across four levels: starting with the context level, which focuses on
game contexts and specific scenarios; followed by the team level, con-
sidering the team’s overarching strategies and styles; the player level
for considering individual players’ technical abilities and performances;
and lastly, the action level for the details of tactical actions and their
execution. This step-by-step thinking of Chain-of-Thought allows the
agent to consider diverse factors and perspectives of complex tactics.

Task decomposition helps the LLM agent to break down complex
tasks into more focused components. The tasks are decomposed into
three types: recommendation, explanation, and evaluation. The rec-
ommendation task enables the model to present various options and
variants (R3), offering tailored tactical suggestions for setups. The
explanation provides insights into the agent’s decision-making pro-
cess (R4), significantly enhancing the transparency and understanding
of tactics. The evaluation involves a thorough analysis of simulation
outcomes to help users assess the potential and suitability of each setup.

4.3 Iterative Exploration
Our framework allows iterative interactions for tactical exploration.
User input serves as the tactical setup, guiding the model towards
customized scenarios. Model outputs offer insights and alternatives for
tactical simulation, effectively turning analysis into a cyclical process
that iterates between setup and simulation, which represents tactical
evolution (R6). Through this structured yet flexible approach, users and
the LLM agent work in a collaborative way to explore, simulate, and
explain tactics, driving toward understanding and optimizing tactics.

5 IMPLEMENTATION

This section details our framework’s implementation. First, we intro-
duce multimodal alignment for handling inputs. Next, we integrate
knowledge and generate prompts for the LLM agent. Finally, we pro-
vide user-customized control. We use GPT-4V [40] as the backend.

5.1 Multimodal Alignment
Recent studies show that multimodal alignment can effectively enhance
LLMs’ vision understanding by forming image-text pairs [18]. For
aligning tactic images with scenario text from different modalities, we
extract visual elements from user sketches and integrate them with se-
mantic descriptions to achieve effective multimodal alignment (Fig. 2).

Visual extraction. The tactic board is rich in visual elements, in-
cluding glyphs for players, lines for trajectories, and arrows for actions.
To meticulously extract visual information from the tactic board, we
process it from both spatial and temporal aspects.

• Spatial location: We establish a coordinate system to precisely
locate players on the field and use continuous coordinate points
to represent trajectories for better spatial expression.

• Temporal description: Based on the order of sketches, we describe
the sequence of actions to present the logic of tactical execution.

Semantic integration. We use predetermined templates to organize
the extracted visual elements. To enhance the overall description’s un-
derstandability, the template includes the interactions between players,
integrating semantic information to complete the alignment.

5.2 Knowledge Integration
Domain knowledge is a crucial factor influencing the performance of
LLM agents. Although LLMs have demonstrated exceptional knowl-
edge in some domain-specific tasks, they may lack sufficient expertise
for tactical analysis in particular scenarios. To mitigate this limitation,
we transform tactic and scenario knowledge into knowledge documents
and utilize retrieval-augmented generation (RAG) [27] to improve the
LLM agent’s response by retrieving relevant information (Fig. 3).

Knowledge document. The knowledge document is composed
of tactic-based and scenario-based knowledge organized as text data.
This provides comprehensive information to enhance the LLM agent’s
understanding and response generation in tactical scenarios.

Fig. 2: Two templates of multimodal alignment. We use colors to charac-
terize the information after visual extraction: orange for player role, blue
for action, green for location, and red for trajectory.

Tactic-based knowledge (Fig. 3(A)) is derived from tactic image-text
pairs after multimodal alignment, including the visual depiction and
coordinate system. The visual depiction describes the visual encoding
of the tactic board, including glyphs, lines, and arrows. The coordinate
system includes the mapping of data relationships on the tactic board.
This knowledge helps the LLM agent to understand the tactical details.

Scenario-based knowledge (Fig. 3(B)) is designed for users to convey
customized scenarios to the LLM agent. This type of knowledge covers
various aspects of tactical scenarios, including physical, statistical, and
behavioral information, to provide a comprehensive understanding of
tactical scenarios. The details are as follows.

• The physical information includes the collected height and weight
data of each player within the current scenario. In addition, we
calculate the average speed of each player through the selected
scenario, which is treated as physical information to evaluate the
physical capabilities of the player in the tactic.

• The statistical information is shown for the interactive selection
of the team and player matchup in the current tactic. We calculate
on/off-court statistics for every selected player matchup. On/off-
court information measures the difference in performance of the
offensive player with the defensive player on or off the court. It
helps users to understand the impact of the matchup on the tactic.
We calculate five metrics, including field goals, three-point field
goals, assists, turnovers, and personal fouls, and normalize them.

• The behavioral information is reflected in the situation. Referring
to the existing research [49], we allow users to perform similar
situation retrieval, which can make users associate similar tactical
execution in real games with the current situation. The behavioral
information helps users customize the tactic’s scenario, enabling
the LLM agent to understand and generate similar situations.

Retrieval-augmented generation. We utilize the text-embedding-
3-large model [39] provided by OpenAI to embed the knowledge doc-
uments. The resulting vectors are stored in a FAISS vector store [8],
enabling efficient retrieval by the LLM agent. This approach enhances
the LLM’s ability to access and incorporate relevant external knowl-
edge, thereby improving the quality of its responses.

Fig. 3: Knowledge integration of our framework. (A) Tactic-based knowl-
edge. (B) Scenario-based knowledge.

5.3 Prompt Generation
Prompt engineering has proved to effectively enhance the performance
of LLMs in solving domain-specific tasks [59]. Therefore, we design a
dynamic prompt template (Fig. 4) to leverage LLMs generating based
on user demands, consisting of six components.
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Fig. 4: The multi-step prompt generation for the tactical play design (From top to down). (1) Specify the role of the LLM agent. (2) Specify the
knowledge document that the LLM agent should consider for the analysis. (3) Specify the task for the LLM agent. (4) Define the output format for the
LLM agent. (5) Provide multi-modal input to the LLM agent. (6) Ask the LLM agent to conduct reasoning following chain-of-thought prompting.

• The role involves the context description related to the agent
(Fig. 4(Role)). We clearly define the role played by the LLM and
specify the necessary capabilities for this role.

• Knowledge augments the LLM agent’s response by enabling the
agent to retrieve from the external knowledge documents we pro-
vided (Fig. 4(Knowledge)).

• The task includes the requirements for each task. For example,
the recommendation task requires recommending tactical setups,
the explanation task delves into the logic behind tactical decisions,
and the evaluation task focuses on analyzing the ability required to
execute the tactics and the possible outcomes (Fig. 4(Task)).

• The output format describes the specific outputs for each task.
We define a set of public variables and task-specific variables for
all three kinds of tasks (Fig. 4(Output Format)). For instance, the
recommendation task necessitates an additional output of the action
type. Both explanation and evaluation tasks demand outputs with
both overview and detail. The overview considers the overall tactic,
while the detail focuses on individual players. For explanations, the
agent details the actions of each player, including how these actions
counter tactics and their objectives. The evaluation detail probes
whether the evaluated player’s ability aligns with the objectives of
the current action and assesses potential opponent reactions.

• The inputs are the trigger of communicating with the LLM agent.
Basic input requires knowledge and an image-text pair. Considering
the task relation, the explanation has an external input of the recom-
mendation’s output, and the evaluation has both the recommendation
and explanation’s input (Fig. 4(Inputs)).

• Reasoning is to guide the logical reasoning process. The chain-of-
thought prompting allows the LLM agent to think and solve problems
comprehensively. We use the CoT method to guide the LLM along a
specific logical path and require the model to reason in four levels,
including context, team, player, and action level (Fig. 4(Reasoning)).
To manage context sessions, each prompt and its response are saved

as a history node and used as part of the input for the LLM agent
in subsequent interactions. This ensures the LLM agent can utilize
historical information to generate coherent and relevant responses.

5.4 Customization Control
To flexibly control the generation of the LLM agent, we design struc-
tured tags to embed users’ natural language inputs. These tags are
categorized into three aspects according to different objectives, namely,
description, requirement, and comment.

• Description. Users’ descriptions primarily serve to supplement
inputs. We add these into the inputs component of the prompt,
enriching the LLM agent’s understanding of the current situation.

• Requirement. We incorporate users’ requirements into the task
component. This allows users to add semantic requirements for
the expected response, ensuring that the LLM agent’s output more
closely matches users’ specific requirements.

• Comment. Users’ comments are served as feedback to the responses.
We add comments along with the current response to guide the agent
in refining its response. Considering the previous context, the agent
is directed to complete the task after integrating these comments.

6 VISUAL DESIGN

Smartboard consists of four views. The chat view (Fig. 5(A)) allows
users to type text to control the exploration process with the LLM
agent. The setup view (Fig. 5(B)) helps users define the initial tactics
of interest. Users can select one of the alternatives to iterate the tactical
simulation. The simulation view (Fig. 5(C)) shows the simulation
alternatives returned by the LLM agent. The history view records
(Fig. 5(D)) the simulation path and users’ interactions.

6.1 Chat View
To enhance natural language interactions between users and the sys-
tem, the chat view (Fig. 5(A)) presents system feedback and allows
users to control outputs (R5, R6). From the outset, the chat view of-
fers clear textual guidance through the operational process and various
functionalities of the system (R1). We introduce tags representing dif-
ferent input types, including the description, requirement, and comment
(Fig. 5(A1)). This approach significantly enhances users’ ability to
steer the results generated, ensuring a more tailored and controlled
interaction experience. Throughout the interaction, the chat view de-
livers real-time feedback, including confirming the reception of user
commands, indicating the current status of operations, and suggesting
the next steps (Fig. 5(A3)). Moreover, users can conduct free-form
conversations with the LLM agent (Fig. 5(A2)).

Interaction. The interactions of the chat view are as follows.
• Input natural language. Users can type directly into the chat box

or utilize voice input by clicking the microphone button, enabling
fluent natural language input.

• Select tags. Users can refine their input for targeted outcomes by
selecting from a range of predefined tags, thus exercising precise
control over the generated results.
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Fig. 5: The system interface of Smartboard. (A) The chat view provides system feedback and enhances communication between users and the
system through tag selections and open-question answering. (B) The setup view provides interactions during tactical setup with tactics sketching,
matchup analysis, and situation retrieval. (C) The simulation view presents the recommended tactics of the coach agent with an explanation and
evaluation in both overview and detail. (D) The history view records the users’ tactics and provides the classic tactics for starting exploration.

6.2 Setup View

The setup view (Fig. 5(B)) consists of the tactic view, matchup view,
and situation view. The tactic view enables users to sketch basketball
tactics (R1). The matchup view provides matchup references (R2). The
situation view allows users to retrieve similar tactical situations(R2).

The tactic view (Fig. 5(B1)) allows users convey specific tactical
content through sketching (R1). Referring to the existing design [46],
we use circles with different colors to represent offensive and defensive
players, respectively, with numbers indicating player roles and different
line types denoting player actions. Users can specify player locations
and roles on the tactic board by clicking the corresponding player icons
and assign actions to players by selecting different line types.

The matchup view (Fig. 5(B2)) is designed to offer a detailed cus-
tomization of the tactical scenarios. It allows users to set up player
matchups and analyze them using historical statistical data (R2). Users
can choose two teams from a dropdown menu, assigning specific roles
to players based on a list. These role assignments are then integrated
with the LLM agent as scenario-based knowledge. The on/off-court
statistics are visualized using bar charts, with different colors indi-
cating on-court or off-court performance. The charts display metrics
such as field goal percentage, three-point field goal percentage, assists,
turnovers, and fouls, normalized for comparative analysis. Moreover,
we design a tooltip to present the physical information of each player.

The situation view (Fig. 5(B3)) enables users to retrieve the current
tactic’s situation from the tactic view, examine historical real-game
data for similar situations, providing insights into player behavior (R2).
By mapping retrieval errors to the matching rate, we provide a list of
retrieved situations, including sequence number, matching rate, teams,
score difference, and remaining time, allowing users to integrate se-
lected behavioral information into the LLM agent.

Interaction. The interactions of the setup view are as follows.
• Switch matchups. Users can select offensive and defensive teams

and players in the matchup view to analyze detailed matchups.
• Sketch tactics. Users can specify players in the matchup view and

draw movements from the action list in the tactic view.

• Save setups. Users can click the save button to record the setup
and generate recommendations.

• Lasso situations. Users can click the Lasso button to filter specific
players and actions in the tactic view with a Lasso tool, updating
the retrieval results in the situation view.

6.3 Simulation View
After completing the current tactical setup, users can conduct a simula-
tive analysis in the simulation view, including up to three tactic boxes
and the narration view (Fig. 5(C)). The tactic box provides recommen-
dation tactics (R3). The narration view allows users to explore the
detailed explanation and evaluation results of these tactics (R4).

The tactic box (Fig. 5(C1)) presents the recommended tactical
option. Three tactic boxes correspond to different tactical variants (R3).
In each box, the tactic’s name is displayed at the top, followed by a
tactic board that details specific tactical information, mirroring the style
and visual mapping of the setup view for consistency. Below the tactic
board, a textual description provides an overview and evaluation of
the tactic, ensuring users have a clear and quick understanding of the
recommended options. This layout helps users compare and contrast
the different tactical variants effectively.

The narration view (Fig. 5(C2)) presents the detailed explanation
and evaluation of each player in the tactic, incorporating visual ele-
ments directly within the narrative reasoning content (R4). The detailed
explanation includes actions, counters, and objectives, while the evalu-
ation covers objective alignment and potential reactions. We use bold
blue titles to highlight distinct aspects of these details to streamline the
user’s understanding of the insights in the narrative words.

Interaction. The interactions of the simulation view are as follows.
• Accept recommendations. Users can click the button to accept

the recommended simulation result. The result is updated in the
setup view for users to perform a new round of tactic setup.

• Switch modes. Users can click the toggle to switch between
explanation and evaluation.

• Select players. Users can click on the player to present the tooltip
displaying narrative information according to the current mode.
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Fig. 6: Case 1. (A) O1 passes to O5. (B) O1’s off-ball cut using the screen set by O4. (C) The description added by the expert. (C1) Under the
screen defense. (C2) Route adjustment of O1. (V1) The first tactical variant. (C3) Help defense. (D) The question asked by the expert. (D1) O1’s flex
screen for O2. (V2) The second tactical variant. (V3) The third tactical variant.

6.4 History View
The history view (Fig. 5(D)) is designed to record users’ tactics (R3)
and provides classic tactical setups for exploration (R6).

The tactic card (Fig. 5(D1)) is designed to record the users’ sim-
ulation path of tactics, with the title displaying the user-customized
name. Each card contains a tree diagram representing a complete tactic.
Each circle in the diagram denotes a tactic state saved as a history node.
Following the order from left to right, several states constitute a variant
of the tactic (R3). Below the tree diagram, a time slider allows users
to customize the required execution time for the current tactic. The
time bar follows the overall color theme, with orange for presenting
and blue for collapsing. The slider spans from 0s (start) to 24s (full
offensive round). This time slider method effectively records the user’s
perception of time when analyzing tactics.

The constraint list (Fig. 5(D2)) records users’ operation histories
while exploring tactics (R6). Global constraints capture scenario infor-
mation customized to the entire tactic, such as the selected teams. Local
constraints are attached to each tactic state, documenting the natural
language input. The types of constraints correspond to the tags in the
chat view for consistency, with text detailing the specific contents.

Interaction. The interactions of the history view are as follows.
• Unfold details. Users can click the button in the top right corner

of the tactic card to expand the constraint list.
• Select tactic states. Users can click nodes in the tree diagram

to select a specific tactic state and view the corresponding con-
straint list. Simultaneously, information in the setup view and the
simulation view will roll back to that state.

• Search tactics. Users can type the tactic name and search for the
matched tactics in the top right corner of the history view.

7 SYSTEM EVALUATION

We invited E1 and E2, both with years of coaching experience, to con-
duct case studies using our system. The studies are based on NBA
2015-16 data, detailed in Sec. 3.4. We first introduced the interaction
and visualization features of Smartboard and then allowed the experts
to freely explore interesting tactics and scenarios within an hour. We
recorded their actions and comments throughout the process and con-
ducted interviews to collect their feedback for further improvement.

Each tactic presented in our case studies was evaluated through a
user study. We re-invited six experts (E1-E6) and recruited two addi-
tional certified basketball coaches (E7 and E8). The LLM-generated
outcomes were evaluated from three perspectives: individual tactics,
tactical variants, and overall outcomes. The experts rated them on
several metrics, including correctness, practicality, diversity, efficiency,
insightfulness, and consistency, using a 5-point Likert scale [23]. The
results analysis demonstrated that the outcomes performed well on these
metrics. Please refer to our supplemental material for more details.

7.1 Case 1
This case is an in-depth exploration and analysis of the horns offense
conducted by E1. Starting from the horns formation, the horns offense
aims to use screens and cuts to create scoring opportunities.

Insight 1: Creating open space through team movement is cru-
cial for team DET against team GSW. In the beginning, E1 conducted
an initial tactical setup. To confirm the specifics of the horns offense, E1
typed a question in the chat view. After receiving the required details,
E1 focused on the specific team matchup for further setup. E1 selected
the Detroit Pistons (DET) from the 2015-16 NBA season, noting their
achievement of making the playoffs for the first time since the 2008-09
season. E1 then chose the Golden State Warriors (GSW) as the de-
fensive team, as GSW’s strong defense would provide a challenging
scenario for analysis. The information displayed in the matchup view
caught the experts’ attention. By switching several different player
matchups, E1 observed that all DET players in the matchup view had
a slightly lower FG percentage against GSW players (Fig. 5(B2)). E1
concluded that since the DET players’ shooting percentage slightly
decreased, it was crucial to create more open shooting opportunities
through increased team movement to maintain effective offense. E1
selected the horns offense as the base setup in the history view and
clicked the save button in the setup view for the first simulation. Based
on the recommendations, E1 selected man-to-man defense as the base
defense setup for further analysis of the horns defense.

Insight 2: Jackson’s off-ball cut remains challenging against
Curry’s under the screen defense unless adjusting routes. Com-
mencing with the standard horns offense setup, E1 sketched a pass
from O1 (offensive player 1) to O5 (Fig. 6(A)) in the setup view. Then
E1 continued the simulation with man-to-man defense and sketched
O1’s cut following an off-ball screen by O4 in the next state (Fig. 6(B)).
To provide clarity, E1 added a description in the chat view explaining
that the tactic was designed to create space for O1 (Jackson) (Fig. 6(C)).
After clicking the save button, E1 reviewed three potential defensive
setups and their respective overview information in the simulation view.
E1 considered switch on screen overly reliant on individual prowess,
which diverged from his exploration objective. Therefore, E1 focused
on the setup of under the screen. Considering D1’s fast speed men-
tioned in the detailed explanation (Fig. 5(C2)) and O1’s decreased FG
percentage shown in the matchup view, E1 noted that D1’s action made
it difficult for O1 to receive the pass and make a layup. However, given
the initiative of the offense, E1 mentioned that O1 had the opportunity
to change the route when encountered under the screen, potentially lead-
ing to an open shot instead of a layup. Hence, E1 proceeded with under
the screen setup, adjusting the route of O1 (Fig. 6(C2)) and sketching a
scoring method as a conclusion to the horns offense (Fig. 6(V1)). The
tactic information was recorded in the history view.

Insight 3: Flex screen optimizes scoring opportunities for team
DET players with similar field goal percentages. E1 aimed to explore
an alternate scenario and selected a prior state in the history view. After
reviewing the recommendations, E1 discovered that D4’s help defense
(Fig. 6(C3)) could effectively decelerate O1’s cutting, prompting further
exploration. Accepting this recommendation, E1 revisited the matchup
view (Fig. 5(B2)) and found that DET players have similar FG percent-
ages, indicating comparable scoring abilities. E1 noted that the flex
offense provides adaptable opportunities for all players. Consequently,
E1 inquired through the chat view to validate the applicability of the
flex screen in the current scenario (Fig. 5(A2)). After receiving positive
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feedback, E1 sketched O1’s flex screen for O2 and chose a defense
(Fig. 6(D1)). E1 quickly discovered a scoring opportunity for O2 and
recorded it in the history view (Fig. 6(V2)).

To further explore with real game data, E1 used the lasso tool to filter
the four players involved in the screen in the tactic view and examined
the retrieval results in the situation view (Fig. 5(B4)). Notably, in a
game between DET and GSW, the outcome showed that GSW executed
a switch on screen defense similar to the recommended setup against
DET’s flex screen. In this specific situation, O5 chose to make a layup
that resulted in a foul. Inspired by the outcomes of situation retrieval,
the expert sketched an alternative tactical variant and recorded it in the
history view (Fig. 6(V3)). E1 concluded, “the flex screen optimizes the
scoring opportunities for especially DET players.” Thus, the expert
finished the exploration with three tactical variants, combining the
horns offense with the flex screen. Additionally, the expert mentioned
that the time slider in the history view served as an effective cue that
aided in preventing the endless extension of tactics.

7.2 Case 2
The second case focuses on the hedge defense [36]. The hedge is a
defensive tactic where the defender guarding the screener temporarily
leaves to pressure the ball-handler, aiming to delay or disrupt the play.

We invited expert E2 to conduct this case study. Due to the defensive
prowess and teamwork of the San Antonio Spurs (SAS) during the
2015-16 NBA season, E2 selected it as the defensive team and matched
it against the Houston Rockets (HOU), known for its strong offense.
In the matchup view, E2 found O2 (Harden) has decent three-point
shooting ability facing the D2’s (Green) defense. In order to examine
his three-point shooting situations, E2 sketched several scenarios in
the tactic view and used the lasso tool for retrieval. In the situation
view, E2 reviewed several situations and discovered that team HOU
frequently used pick-and-rolls around O2 outside the three-point line.
These related situations were chosen to integrate behavioral knowledge.

Insight 1: Team SAS requires monitoring Harden’s actions to
minimize fouls when executing the hedge defense. E2 selected
the requirement tag and detailed his intention to simulate defending
pick-and-rolls (Fig. 7(A)). After clicking the save button, the recom-
mendation view showcased three variants of pick-and-rolls (Fig. 7(A1,
A2, A3)). E2 noted, “It’s clear to find that the main difference here
is the screen setter.” Upon reviewing the explanation of every screen
setter, E2 found that high pick-and-roll involving O5 (Howard) and D2
presented a significant size mismatch, making O5’s screen a substantial
threat (Fig. 7(A1)). Considering this threat, E2 accepted this recommen-
dation and focused on the potential next move of D5 (Duncan), O5’s
defender. In the setup view, E2 sketched a hedge defense (Fig. 7(B)) to
prevent O2’s easy shot through D5’s pressure. The results showcased
that O2 passes the ball to circumvent challenges instead of opting for a
direct shot (Fig. 7(B1)). Checking the situation view again, E2 noticed
situations where O2 could still score through quick reactions and his
three-point ability. This prompted E2 to add a comment to simulate
O2 taking direct shots (Fig. 7(B2)). After clicking the refresh button,
the results (Fig. 7(B3)) were shown in the tactic box. The detailed
explanation highlighted that the tactic’s objective is to score or draw
a foul by leveraging defensive pressure. While O2 may possess the
ability to shoot under pressure, shots against a hedge are risky but could
lead to beneficial fouls and free throws. E2 emphasized, “The LLM
agent considers Harden’s characteristics well. SAS should monitor
Harden’s actions to minimize fouls when executing the hedge.”

Insight 2: Effective hedge defense of team SAS requires adaptive
help and recover to manage mismatches caused by Howard. E2
reviewed the recommendations for O5’s off-ball cut (Fig. 7(B1)) and
noticed that O5 was left unguarded because of D5’s involvement in the
hedge. Thus, E2 accepted this recommendation and aimed to further
evolve the defensive tactic in the setup view. To quickly pressure O5
after receiving O2’s pass, E2 devised a layout for other players to move
toward the cutting route of O5 for help defense (Fig. 7(C)). After re-
viewing the detailed explanation, E2 noticed the potential defensive
response to O5’s cut, “The defense might rotate to block Howard’s
path, but his strength can mitigate this effort.” E2 remarked, “The LLM
agent has already considered this countermeasure, showing how thor-
oughly it evaluates the situation.” To block O5’s cut, E2 highlighted

Fig. 7: Case 2. (A) The requirement added by the expert. (A1) High
pick-and-roll. (A2) Wing pick-and-roll. (A3) Corner pick-and-roll. (B) D5
and D2 hedge defense. (B1) O2 passes to O5. (B2) The comment added
by the expert. (B3) O2’s direct shot. (C) Help defense. (D) Principle of
the hedge defense.

the importance of avoiding a size mismatch and then sketched D5 re-
covering to defend O5. To validate the generalizability of this tactic, E2
explored other pick-and-roll setups, focusing on the screen setter’s cut
post-hedge. Using a similar defensive approach, E2 achieved favorable
outcomes and noted that the help and recover allowed D5 to limit O2’s
perimeter shooting and mitigate interior score opportunities caused by
mismatches, showcasing a comprehensive hedge defense. Therefore,
E2 concluded the hedge defense with an insightful principle centered
around “hedge, help, and recover” (Fig. 7(D)).

7.3 Expert Interview

After the case studies, we conducted interviews with experts to collect
their feedback. We engaged in open discussions about the system’s
usability and suggestions. Their insights were summarized as follows.

Usablity. The overall response was positive, with all experts confirm-
ing that the Smartboard is a highly effective tool for analyzing tactics in
basketball games. First, the fine-grained tactical analysis enabled users
to gain deeper insights and consider more tactic variants in different
situations. E1 mentioned: “Smartboard’s step-by-step sketching makes
me dive deep into each part of a tactic.” E2 also stated, “This provides
a clear understanding of the complex interactions between players at
each step, with complex variants of the play possible.” Moreover, E2
mentioned: “Using the Smartboard to explore isn’t just for top-level
coaches. It also provides an effective way for players and fans to get
a better understanding of complex tactics.” Second, the interaction
with the LLM agent for exploring tactics offers advantages over the
traditional analysis process. E1 mentioned, “Analyzing with the coach
agent saves a lot of time compared to analyzing videos and even high-
lights important situations I might have overlooked.” E2 added, “In
real training, we need to simulate many scenarios for tactics. Using
the LLM agent can supplement many variations and details.” E2 also
commented, “During my exploration of tactics, the Smartboard gets
what I expressed just like a real coach would. But unlike a real coach,
it’s ready to give me all the related information and reasoning I need.”

Suggestions. The experts provided several suggestions. First, E2
wanted to use our system to analyze tactics in ongoing games, “Players’
conditions influence the effect of tactical execution in real games. It
would be beneficial if the LLM agent could consider the impact of
player conditions during ongoing games.” Second, E2 focused on
the history view and highlighted the importance of collaboration and
sharing tactics, “Sometimes, I need to share tactics with my players and
analysts. It’s meaningful to export and import tactics in Smartboard.”
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8 DISCUSSION

In this section, we discuss our work from three perspectives, namely,
visual exploration of team tactics, integration of LLM agent, and future
work of sports LLM agent.

8.1 Visual Exploration of Team Tactics
Significance—exploring tactics with LLM agent visually. Fine-
grained tactical analysis revisedfor play design remains pivotal in team
sports. Existing studies [69] have proposed various visualization sys-
tems for tactical analysis. However, the integration of experts’ most
familiar interaction method—sketching with verbal discussion—has
not been adequately considered. We introduce an LLM agent in Smart-
board that supports users in visually analyzing tactics by merging
sketching with natural language inputs. This approach streamlines
communication and fosters dynamic interaction between users and the
LLM agent, leading to personalized and deeper insights into tactics.

Extensibility—modular framework. Our framework is designed
to be modular and extensible, facilitating interaction with LLM agents
through components that can be extended and customized. The interac-
tive sketching of tactics invites evolution into immersive environments
for lifelike simulations. Information integration can adapt to encompass
domain-specific data, enhancing depth and relevance. LLM agent tasks
and reasoning processes are designed to scale with diverse requirements
and various outputs. Human control can be broadened, incorporating
interactions such as gestures or facial expressions. These extensions are
closely aligned with the task’s demands and the model’s capabilities.
While the components of the framework are adaptable, the core strategy
of interaction with the LLM agent remains constant and effective.

Generalizability—beyond sports tactics. While Smartboard is
primarily designed for basketball scenarios, its whiteboard-based tac-
tical representation can be applied across various team sports such
as soccer, rugby, and hockey. Moreover, the principles underpinning
Smartboard’s visual exploration, iterative interactions, and personalized
scenarios have the potential to transcend the realm of sports. These
methodologies can be adapted to other tactical domains, such as mili-
tary, choreography, and finance. However, generalizing to these fields
poses significant challenges in acquiring domain-specific knowledge
and data, as deep tactics are often closely guarded due to competi-
tive reasons. Forming in-depth collaborations with professional teams
offers a practical solution.

Applicability—extending broader scenarios. Through interviews,
experts recognized the potential of Smartboard to apply to tactical train-
ing. As E1 observed, “The detailed tactics stored in a history view can
be transformed into interactive guidance for training.” This functional-
ity enriches the training process, allowing for an interactive review and
refinement of past and present tactics. Players and fans also stand to
benefit from engaging with stored tactics on Smartboard, delving into
an interactive learning experience that deepens their understanding of
the tactics’ diversity and complexity. Moreover, developing a tactic-
based community is a potential application for Smartboard. Utilizing
its interactive features, we can collect tactics and usage logs to fine-tune
a tactical LLM. This could create a collaborative environment where
tactics are not just discussed but also actively improved upon, leverag-
ing Smartboard to explore and share tactics. These applications are the
system engineering aspects that we intend to pursue in the future.

8.2 Integration of LLM Agent
LLM’s performance. During the development and testing, several
issues impacting the LLM agent’s performance were identified, some
caused by user inputs. One notable problem is unexpected inputs, such
as paths or coordinates outside court boundaries. When such inputs
are given, the LLM generates responses based on these unrealistic
scenarios without recognizing the error. Although adding comments
to prevent out-of-bound outputs resulted in reasonable responses, the
agent itself cannot detect this problem or alert the user. To address this,
we restricted the sketching area and implemented boundary validation
mechanisms. If the LLM’s response includes out-of-bound coordi-
nates, the system prompts the user to correct the input in the chat view.
Another issue is the LLM’s handling of rare or non-existent scenar-
ios, particularly specific player matchups and tactics. The LLM often
struggles with these scenarios due to the knowledge boundary [17],

potentially leading to hallucinations or inaccurate outputs. While pro-
viding additional relevant descriptions or enhancing the knowledge
base can help mitigate these edge cases, the LLM still faces challenges
with fundamentally non-existent knowledge or scenarios. A potential
solution is validating these non-existent inputs with a verified database.

On the model side, although the LLM’s variability in recommended
tactics showcases its creativity, it also presents challenges. Inconsis-
tent terminology for the same concepts, such as “pick-and-roll” and
“screen and roll”, can confuse users. This issue can be mitigated by
standardizing terminology through post-processing. Despite specifying
the response format, the agent sometimes deviates by adding unnec-
essary commentary and outputting overlapping coordinates for tightly
guarded players. We address these issues using regular expressions and
an overlap detection algorithm. Hallucinations are another significant
issue, with the agent generating nonexistent tactics or overstating player
abilities, such as recommending three-point shots for centers with low
goal percentages. While we use CoT prompting [72] and RAG [50]
to mitigate these hallucinations, further improvements may lie in ex-
panding the tactical knowledge base and designing a targeted RAG
system to enhance the accuracy and reliability of the LLM’s outputs.
Moreover, the LLM may exhibit bias by over-relying on star players
rather than role players, stemming from imbalanced training data. We
suggest fine-tuning an LLM with diverse players represented data and
implementing fairness checks to balance tactical recommendations.

Multi-agent. We integrated LLM as a coach agent to support varied
interactions and tasks throughout the tactical exploration process. Multi-
agent, which allows for autonomous interactions among agents, could
be a potential enhancement. On one hand, the multifunctional coach
agent can be decomposed into several agents, each focusing on a single
task. Users can thus interact with the task-specific agent in parallel.
On the other hand, different user groups have distinct priorities. For
example, coaches focus more on the overall tactical adaptability across
various scenarios, whereas players concentrate on how these tactics
affect their detailed actions and roles. While our system addresses
these requirements by task decomposition, the multi-agent could offer a
more nuanced approach by assigning role-specific agents to streamline
complex tactical play design.

8.3 Future Work of Sports LLM Agent
The future directions of our work can be summarized into two aspects.
First, Smartboard currently lacks real-time technique integration. Ex-
perts express their interest in exploring tactics that consider ongoing
match factors. Real-time data extraction and player condition evalua-
tion present significant challenges due to the dynamic nature of team
sports. While LLMs can produce streaming outputs, effectively map-
ping these outputs to visual representations remains difficult. Thus, we
plan to integrate advanced real-time techniques and develop a dynamic
visualization system to enable tactical exploration considering real-
time factors. Second, quantitatively evaluating the quality of generated
tactics is challenging. While our case studies have demonstrated the
effectiveness and usefulness of our system, more rigorous evaluation is
needed. Therefore, we will focus on establishing metrics from both real
games and experts’ perceptions. This involves developing a compre-
hensive framework to assess the accuracy, practicality, and insightful
value of generated tactics for enhanced analysis.

9 CONCLUSION

In this work, we propose a method for visually exploring team tactics
using an LLM agent. At first, we collaborate with basketball experts
and propose an extensible framework that allows users to communi-
cate with the coach agents. leveraging this framework, we develop
Smartboard, an agent-based interactive visualization system designed
for fine-grained tactical analysis. Smartboard enables users to cus-
tomize scenarios and iteratively explore tactics in setup, simulation,
and evolution. Our approach’s effectiveness is validated through case
studies based on real-world basketball datasets and expert interviews,
demonstrating the usability of our system in analyzing team tactics.

In the future, we plan to generalize our framework to other team
sports and explore its feasibility in other tactical domain applications.
Furthermore, we plan to use our system to collect a dataset of complex
team tactics and fine-tune an open-source tactical LLM.
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