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Tac-Simur: Tactic-based Simulative Visual Analytics of Table Tennis

Jiachen Wang, Kejian Zhao, Dazhen Deng, Anqi Cao, Xiao Xie, Zheng Zhou, Hui Zhang, and Yingcai Wu

Abstract— Simulative analysis in competitive sports can provide prospective insights, which can help improve the performance of
players in future matches. However, adequately simulating the complex competition process and effectively explaining the simulation
result to domain experts are typically challenging. This work presents a design study to address these challenges in table tennis.
We propose a well-established hybrid second-order Markov chain model to characterize and simulate the competition process in
table tennis. Compared with existing methods, our approach is the first to support the effective simulation of tactics, which represent
high-level competition strategies in table tennis. Furthermore, we introduce a visual analytics system called Tac-Simur based on the
proposed model for simulative visual analytics. Tac-Simur enables users to easily navigate different players and their tactics based on
their respective performance in matches to identify the player and the tactics of interest for further analysis. Then, users can utilize the
system to interactively explore diverse simulation tasks and visually explain the simulation results. The effectiveness and usefulness of
this work are demonstrated by two case studies, in which domain experts utilize Tac-Simur to find interesting and valuable insights. The
domain experts also provide positive feedback on the usability of Tac-Simur. Our work can be extended to other similar sports such as
tennis and badminton.

Index Terms—Simulative Visual Analytics, Table Tennis, Design Study

1 INTRODUCTION

Simulative analysis plays an important role in competitive sports. For
example, it has been used in basketball [31] and tennis [35] to provide
prospective insights for coaches to improve the performance of players
in future matches. In table tennis, simulative analysis also helps ob-
tain valuable insights into the tactical behaviors of players [24, 38, 44].
However, prior studies mostly used complicated mathematical mod-
els for simulative analysis without adopting any visual or interactive
means. According to our experts, they experience difficulties in ex-
ploring model spaces and determining meaningful patterns. Similarly,
coaches and players face challenges in understanding the analysis re-
sults. Thus, simulative analysis has seldom been accepted or adopted
by professional teams in table tennis. In this work, we take a visual
approach in contrast to the aforementioned simulative analyses and
conduct a design study in the simulative visual analytics of table tennis.

Simulative analysis in table tennis can obtain the outcomes of future
matches [24, 38, 44], which is similar to predictive analysis. However,
in addition to the outcomes, simulative analysis also focuses on the
adequate modeling of each step within the simulated process [8] while
predictive analysis only attaches importance to the accuracy of the
predicted results [17]. Therefore, we cannot directly apply the existing
methods of predictive visual analytics to the simulative visual analytics
of table tennis. In sports visualizations, iTTVis [40] is a representative
visual analytics system for investigating table tennis data. However,
iTTVis is used to investigate the correlation of statistics in a table tennis
match without any prospective insights into future matches, which is
different from a simulative visual analytics system. Therefore, a newly-
designed visual analytics system for the simulative analysis of table
tennis is highly demanded by our domain experts.

We worked closely with our domain experts, who are data analysts
working for one of the top national table tennis teams around the world,
to develop such a visual analytics system. During the collaboration,
we encountered two major challenges. The first challenge is to con-
struct an effective model for the tactic-based simulation of table tennis.
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Existing studies mostly use a first-order Markov chain model for simu-
lation [24, 38, 44], which cannot simulate the effects of tactics. In table
tennis, a tactic represents three consecutive strokes (the action of hitting
the ball once is defined as a stroke) according to the experts. There-
fore, the effect of a tactic reflects upon the correlation among three
consecutive strokes. However, the first-order model can only cover the
correlation between two adjacent strokes given the Markov property,
leading to ineffective simulation of matches. The second challenge is
to provide effective exploration and explanation for simulative analysis.
Experts need to conduct diverse simulation tasks to explore possible
optimization strategies for future matches. However, a large number
of strokes and tactics can easily overwhelm experts during exploration.
Moreover, according to the experts, they require the simulated match
process to interpret the results but they are often confused with the
process depicted by complicated mathematical models. The transi-
tion from an abstract model to practical competition data is necessary.
Therefore, providing friendly interactions for strategy exploration and
effective visualizations for result explanation is highly challenging.

We propose a hybrid second-order Markov chain model to solve
the first challenge. We extend the classical technique (i.e., three-phase
method [39]) for tactical analysis in table tennis and integrate it into a
second-order Markov chain model [5]. The new model can involve the
effects of tactics in the simulation process and obtain a more accurate
result compared with the first-order Markov chain model. As for the
second challenge, we design Tac-Simur, a visualization system for
tactic-based simulative analysis. The system contains three components:
a navigation component, an exploration component, and an explanation
component. The navigation component enables experts to browse the
matches of multiple players and locate the players and tactics of interest.
Experts can then explore the simulation process and evaluate the effects
and feasibility of simulations in the exploration component. Lastly,
experts can explain the simulation result in the explanation component
through the effective visualization of the simulation model.

Contributions of this work are as follows:
• We characterize the problem domain of the simulative visual

analytics of table tennis into three aspects, namely, navigation,
exploration, and explanation.

• We introduce a well-established model to adequately simulate
the table tennis matches on the basis of tactics.

• We develop a visual analytics system to help facilitate the sim-
ulative visual analytics of table tennis.

2 RELATED WORK

In this section, we introduce prior studies that are closely related to our
work, including tactical analysis of table tennis, prospective analysis in
sports, visual analytics in sports, and predictive visual analytics.
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2.1 Tactical Analysis of Table Tennis
Tactics are one of the focal points in table tennis analysis, and the
number of studies in this field has increased in recent years [8]. Tamaki
et al. proposed a time-saving method to explore scoring rates in table
tennis games based on shot numbers [30]. Zhang et al. also pro-
posed a representative data mining method based on the classical three-
phase method [39] to assess the technique effectiveness of table tennis
games [45, 47]. Pradas et al. presented a temporal analysis approach
to evaluate different temporal structures of table tennis games [27].
Lanzoni et al. analyzed the technical and tactical differences of table
tennis players in three categories [13]. These studies primarily used the
statistics of key indicators to evaluate player performance in matches.
Moreover, techniques such as data mining and artificial neural networks
also have been widely applied to tactical analysis for identifying as-
sociation characteristics in table tennis strokes [46]. However, these
methods cannot provide prospective insights for experts. Hence, both
Zhang [44] and Pfeiffer et al. [24] proposed a first-order Markov chain
model for tactical analysis based on simulation of table tennis games.
Wenninger and Lames further improved the model with a numerical
derivation method, which aimed to identify the effect of different tac-
tical behaviors on the scoring rate [38]. However, this model cannot
simulate the effects of tactics, which motivates us to develop a new
model to integrate the tactic into the simulation.

2.2 Prospective Analysis in Sports
Recently, the interest in prospective analysis of competitive sports
has increased significantly [1]. For example, Vračar et al. integrated
the Markov process with multinomial logistic regression to predict
points in basketball matches [31]. In addition, several methods, such
as the network-based prediction model [6], the computational random-
walk model [9], and many other models [3, 18, 21], predict the future
outcomes of different sports. However, these methods primarily focused
on the outcome of matches and disregard the complexity of the inner
process of matches. Wei et al. developed a series of methods [33–35]
to simulate tennis matches and reveal patterns within the match process.
However, these models cannot be applied to table tennis due to distinct
data structures and match rules. Apart from tennis, the Markov chain
model that simulates table tennis matches is also a significant method
proposed by Zhang [44], Pfeiffer et al. [24], and Wenninger and Lames
[38]. This model inspires our work through its simulation of the state-
transition feature in table tennis matches. However, this approach fails
to effectively model tactics due to the Markov property. Therefore, we
propose a new simulation model based on this model.

2.3 Visual Analytics in Sports
Visual analytics in sports has elicited considerable research attention
and the number of related works is increasing rapidly [23]. In bas-
ketball, Cervone et al. proposed POINTWISE to predict points using
player-tracking data in NBA games [2]. Meanwhile, other studies
of basketball such as Courtvision [10], GameFlow [4], MatchOrches-
tra [32], and BKVis [16] focused on shot distributions, events, and
performance indicators, respectively. In soccer, SoccerStories provided
an innovative visualization interface for exploring soccer games with
flexible interactions [22]. ForVizor used a tailored Sankey diagram to
represent changes in team formations in soccer games [41]. In baseball,
StatCast Dashboard [11], Baseball4D [7], and Baseball Timeline [20]
were representative works for the visual analytics of baseball tracking
data. Furthermore, there were also a large number of significant studies
about other sports events, like rugby [14], ice hockey [25], fencing [48]
and tennis [26]. In particular, iTTVis supported the visual analytics of
table tennis data [40]. It provided visualizations from diverse aspects
such as box scores and strokes attributes. However, these approaches
cannot support simulative analysis, thereby motivating us to develop a
visualization system to help users explore and explain the simulation.

2.4 Predictive Visual Analytics
We also refer to the works of predictive visual analytics given the
similarity between prediction and simulation. Lu et. al conducted a
survey regarding the state-of-the-art in predictive visual analytics [17].
However, we cannot directly apply the existing works to simulative
visual analytics because simulative analysis focuses on the adequate

process simulation and the precise result prediction whereas predictive
analysis only focuses on the latter one. A complete review of predictive
visual analytics is beyond the scope of this work. More details about
predictive visual analytics can be found in the recent survey [17].

3 BACKGROUND AND SYSTEM OVERVIEW

In this section, we firstly introduce definitions of terminologies used
in the domain and the data used in this work. Then we analyze the
requirements for simulative analysis of table tennis.

3.1 Background

Table tennis is a highly confrontational sport wherein two opposing
sides hit a ball back and forth on the table with a net until one side
misses the ball and the other scores a point. The structure of a match is
illustrated in Fig. 2 black. A formal match is typically a best-of-seven
series and involves four to seven games. Each game contains tens of
rallies. The winner of each game is generally the one who first wins
eleven rallies. Each rally contains strokes hit by two players.

A stroke is an action wherein a player hits the ball once with his/her
racket. It is the basic observation unit during data collection [24]. We
use three technical attributes shown in table 1 to describe a stroke,
namely, stroke placement, stroke technique, and stroke position.

A rally is the composition of all strokes given by two players to
score one point. It is the basic unit for judging one point. Therefore, it
is the basic unit of analysis during match simulation, and the simulation
of a rally can be regarded as the simulation of a match [24].

A tactic is composed of any three consecutive strokes in a rally.
As Zhang and Zhou [47] indicate, the attribute of the current stroke
largely depends on the former two strokes from a player himself/herself
and his/her opponents. Specifically, the first stroke of a player is the
inducement of a tactic. If a tactic is successful, then his/her opponent
would hit back the first stroke with the second stroke expected of
him/her, and then the player would hit back with the third stroke he/she
prepared in advance with a high scoring rate. That is, if a tactic works,
the player are more like to seize the initiative and win the rally.

A tactical adjustment is a strategy to change the usage of tactics
for a player. Experts typically conduct a tactical adjustment by chang-
ing the technical attributes (Table. 1) of strokes. For example, they
will increase the proportion of using reverse (a stroke technique) in
serve rounds to determine whether such an adjustment can increase the
winning rate. Experts will also concurrently change multiple stroke
attributes during simulation.

3.2 Data Description

The data is manually collected from match videos by professional
table tennis players. Both the technical attributes of strokes and the
contextual data such as the maker of a stroke, the order of all strokes,
and the score information are included during collection. The primary
stroke attributes used for analysis are presented in Table. 1 as follows.

Table 1. The stroke attributes

Stroke placement Position of the ball on the table tennis ta-
ble after it is hit (i.e., short forehand, short
middle, short backhand, half-long forehand,
half-long middle, half-long backhand, long
forehand, long middle, and long backhand).

Stroke technique Technique used to hit the ball (i.e., pendu-
lum, reverse, tomahawk, topspin, quick at-
tack, smash, flick, twist, push, short, slide,
block, and lob).

Stroke position Position of the player when he/she is hitting
the ball (i.e., forehand, backhand, backhand
turn, and pivot).

Stroke player Player hitting the ball.
Score A/B Winner of the rally a stroke belongs to.
Match ID / Stroke ID Index of the match / stroke.
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3.3 Requirement Analysis
We worked with two domain experts, namely, a professor and his
Ph.D. candidate from the Department of Physical Education. Both
were former professional table tennis players and have worked for one
of the top national table tennis teams in the world for more than 5
years. Besides, one of our co-authors who majors in computational
sports science worked as a Liaison [29] during the cooperation. At first,
we identified the problem domain with a simple pilot system. Then,
we developed the simulation model through trial and error based on
the problem domain. Finally, we iteratively designed and developed
the visual analytics system according to the experts’ feedback and
suggestions. The detailed milestones are as follows.
♦ Characterizing the problem domain. We held weekly meetings

with the domain experts to identify the problem domain of the
simulative analysis of table tennis. To facilitate this process, we
developed a pilot system to help identify the limitations of existing
methods and collect the requirements. After two-month exploration
and iteration, we finalized the problem domain.

♦ Developing the simulation model. We tried various simulation
models and it turned out that the simulation process of the Markov
chain model is more comprehensible than deep learning models.
Therefore, we constructed our model based on the second-order
Markov chain model and the typical theories of table tennis.

♦ Designing interactive visualizations. When the model was ready,
we started the visual design of the system according to the require-
ments and the model. We designed the initial system at first and
iterated the design with experts during weekly meetings.

♦ Developing the analytic system. We developed a prototype based
on the design and deployed it on the web for the experts to use. Dur-
ing this period, the interactions and visualizations were frequently
revised in accordance with the experts’ feedback. The system was
iteratively refined through considerable revisions.
We summarized the requirements from the experts into three aspects,

namely, navigation, exploration, and explanation.
Navigation can help experts have an overall idea about the players they
are going to analyze, facilitating the analysis process.
R1 What are the matches and the results of each player? When experts

select the data to be analyzed, they will firstly choose a player
they are interested in and review the result of the matches he/she
participated in. Usually, they tend to analyze the close matches or
the ones revealing the characteristics of the player.

R2 What is the playing style of a player? What is the key tactic in the
matches? The playing style of a player is intrinsically indicated
by the type of tactics he/she used most, and the type of tactics
he/she scored most. This information can provide navigation and
reference for analysts while applying adjustments. For example, if
a player is poor at a frequently-used tactic A, then the experts will
expect to improve this tactic by adjusting its strokes. Moreover,
the information is also necessary to explain the simulation results.

Exploration can help experts integrate empirical domain knowledge
into the tactical adjustments and enhance the adjustment feasibility.
R3 What kind of strokes is worth adjusting most? A player could have

lots of strokes that can be adjusted. However, instead of adjusting
each stroke to examine the result, experts would like to find a set of
key strokes that may be important for improving the performance.
This can help them significantly reduce the time for searching
appropriate adjustment strategies.

R4 What is the effect of an adjustment strategy? What is the feasibility
of an adjustment strategy? To evaluate an adjustment strategy,
experts need to know the effect and feasibility of the adjustment
strategy. Specifically, the effect means the increment/decrement
imposed to final winning rates and the feasibility characterizes the
difficulty of utilizing an adjustment strategy in real scenarios.

Explanation can help experts understand the simulated match process,
interpret the results of adjustments, and communicate the findings to
players to improve the performance.
R5 How does a tactical adjustment influence the strokes and tactics?

Experts need to know the reasons for the positive or negative
effect of a particular adjustment. Generally, the reasons lie in the
influence of the adjustment to the latter strokes. For example, the
positive effect of increasing the usage of quick attack, an offensive

stroke technique at the second stroke is because this adjustment
can further raise the usage of other offensive techniques at latter
strokes, which can easily enhance the winning rate of the player.

R6 How to conduct a tactical adjustment in practice? Once an adjust-
ment strategy is discovered, experts will expect to figure out how
to conduct it in real scenarios so that they can communicate it to
the players. Specifically, experts need to examine the relationship
between the adjusted stroke and the former strokes to provide a
practical solution for players (e.g., to increase the usage of quick
attack at the third stroke, you need to use pendulum to serve).

Fig. 1. The overview of the system. The system consists of three
components, i.e., the data processing component, the model component,
and the visualization component.

3.4 System Overview
Tac-Simur is a web application with three components: the data process-
ing component, the model component, and the visualization component
(Fig. 1). The data processing component is responsible for extracting
the required attribute data from the raw database and providing data
interfaces for modeling and visualization. The model component ini-
tializes the hybrid Markov chain model for each player with the data
from the data processing component. The visualization component is
the interface for simulative visual analytics. This component consists
of three parts, namely, navigation, exploration, and explanation. The
navigation part helps users locate a dataset and tactics of interest for fur-
ther analysis. The exploration part supports flexible adjustments to the
matches. Once an adjustment is conducted, the model component will
receive it and send the simulation results back to the exploration part
for visual comparison and evaluation. The explanation part provides
a straightforward presentation of the simulation process for reasoning
and validating the results generated in the exploration part. The data
processing component is implemented via MongoDB and Express.js.
The model component is implemented via Python. The visualization
component is implemented via Vue.js.

4 MODEL FOR SIMULATION

In this section, we firstly define the simulation task in table tennis
and briefly introduce the Markov chain model. Thereafter, a well-
established hybrid second-order Markov chain model is presented to
address the limitations.
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Fig. 2. The example of the structure of a match. M refers to ”Match”, Gi

refers to ”Game”, Ri
j refers to ”Rally”, and Si, j

k refers to ”Stroke”. The red
parts are newly added compared with the old model. (A) illustrates the
division of the four phases.
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4.1 Task Definition and Model Overview
As shown in (Fig. 2 black), a table tennis match is a set of games M =
{G1,G2, . . . ,GnM} (for simplicity, we use the notation n∗ to indicate the
amount of the elements in ∗) and a game consists of a number of rallies
Gi = {Ri

1,R
i
2, . . . ,R

i
nGi
}. For each rally, it can further be quantified as

a stroke sequence Ri
j = {S

i, j
1 ,Si, j

2 , . . . ,Si, j
nRi

j
,Pi

j}, where Si, j
k is the kth

stroke and Pi
j is the result of Ri

j (Player 1 wins or loses). Si, j
k ,Pi

j ∈ S, a
discrete state space characterized by the combination of attributes in
Table 1. Therefore, the simulation of a table tennis match intrinsically
involves simulating the stroke sequences (rallies). Specifically, given
the first stroke, Si, j

1 , a simulation model should obtain the remaining
strokes including the winner Pi

j by assigning the states from S to them.
The original model [24] for simulation of matches stems from Martin

Lames’ Markov chain model [12]. However, when applied to the
simulation task, it has two limitations:

Tactic modeling is inadequate. The first-order Markov chain
model treats each rally within a game as a first-order Markov pro-
cess, in which the Sk is only determined by Sk−1 and a static transition
matrix T (Fig. 3(C) blue). It cannot simulate the table tennis matches
precisely because a tactic is defined by the states of three consecutive
strokes (i.e., Tk = (Sk,Sk+1,Sk+2) and Sk,Sk+1,Sk+2 ∈ S). The transi-
tion probability between two states from S varies in different phases
of a rally (e.g., serve, receive, and two stalemates Fig 2(A)). Thus
modeling the tactic with a one-step transition matrix is inadequate.

Stroke characterization is insufficient. In table tennis, a stroke
is typically characterized by stroke placement (Pla), stroke technique
(Tec), and stroke position (Pos) (Table. 1). The original model charac-
terizes the transition of stroke states with only one of the three attributes
(Fig. 3(B) blue), which is insufficient to simulate the real situation.

However, compared with other deep learning models, this model is
more comprehensible because it depicts the interaction between players
clearly through a transition matrix. As a simple probabilistic graphical
model, the Markov chain can trace and interpret each step within the
simulation of table tennis as a practical stroke within the match.

Therefore, based on the original model, we constructed a hybrid
second-order Markov chain model. The new model improves the
two aspects mentioned above. First, we split all rallies and divided
them into four kinds of Markov processes on the basis of the three-phase
method [39] (Fig. 2(A)). Each Markov process consists of two transition
matrices (Fig. 3(A) red). One depicts the transition from Sk−1 to Sk and
the other depicts the transition from Sk−2 to Sk. In this way, tactics can
be modeled properly as the current stroke is determined not only by the
former stroke but also by the one before the former stroke (Fig. 3(C)
red). Thus the simulation process of the hybrid second-order Markov
chain model is more precise and reasonable. Second, we expanded the
number of attributes used in stroke characterization to a maximum of
three, namely, Sk = (sk

1,s
k
2,s

k
3)(s

k
1 ∈ Pla,sk

2 ∈ Tec,sk
3 ∈ Pos) (Fig. 3(B)

red). Experts can conduct more complicated and flexible adjustments
with strokes characterized by more attributes.

4.2 Hybrid Second Order Markov Chain Model
Here we introduce our hybrid second-order Markov chain model. The
domain experts indicated that players always exhibit tactical awareness
during matches. Therefore, a stroke is highly relevant to the former
two strokes as a tactic contains three consecutive strokes. To model
this feature, we ultimately decided to use a higher order Markov chain
model [5]. Briefly, an nth-order Markov chain model is composed of n
first-order models. Therefore, a conventional nth-order Markov chain
contains (m−1) ·mn parameters (m is the number of state attributes).
Raftery [28] provided an optimization method to simplify the computa-
tion process. Ching et al. further [5] extended this method to a more
accurate one. Here we adopted the concept of the second-order Markov
chain model to construct a hybrid model as follows:

Vk = λ1 ·Vk−1 ·T1 +λ2 ·Vk−2 ·T2, (1)

where λ1 +λ2 = 1. Given that a tactic involves three strokes, a second-
order Markov chain model (Equation. 1) can appropriately model the

influence of tactics. Here T1 denotes the transition matrix from the
(k−1)th stroke to the kth stroke whereas T2 indicates that from the (k−
2)th stroke to the kth stroke (Fig. 3(A) red). λ1 and λ2 are the weights
estimated by minimizing the prediction deviation (Fig. 3(C) red). The
transition matrices, T1 and T2, of the model is an empirical transition
probability matrix. As shown in Fig. 3(A), the row headers and column
headers of the matrices T1 and T2 (T for first-order Markov chain
model) are the states of a former stroke and a latter stroke respectively.
The transition matrices and initial state vectors are estimated by the
frequency of each state from the analyzed matches. Moreover, the
different phases in a rally are simulated by different Markov processes.
In our case, the model comprises four Markov processes, as shown
in Fig. 2(A). According to Wu et al. [39], the playing strategy of a
player varies over rallies. When the player serves, he/she tends to
conduct more offense than defense. However, when he/she receives,
the situation is reversed. Meanwhile, the first tactics of the two players
in a rally are more diverse than those afterward. Therefore, we first
subdivided the rallies of a game (Gi = {Ri

1,R
i
2, . . . ,R

i
nGi
}) into two

subsets (Gi,P1 and Gi,P2) according to the serving player (Fig. 2 red).
Further, we split a rally (Ri

j) into four phases, the serve phase (Ri
j,S), the

receive phase (Ri
j,R), and the stalemate phases of two players (Ri

j,ST 1
and Ri

j,ST 2)(Fig. 2(A) red). Ri
j,S and Ri

j,R are the first tactics of both
players, namely, the serve tactic for one player and the receive tactic for
the other, and Ri

j,ST 1 and Ri
j,ST 2 include the tactics at stalemate phases.

During simulation, two initial state vectors, namely, V1 correspond-
ing to the first stroke S1 and V2 corresponding to the second stroke S2
are required. Then the vectors of strokes (V3 and V4) can be obtained
by Equation. 1 with the transition matrices in RS and RR. After that,
with V3 and V4, the vectors of the strokes in RST 1 and RST 2 are further
obtained, as well as the convergent results.
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Fig. 3. The original model and the new model. Blue encodes the original
model, red encodes the new model. (A) and (B) present the state vectors.
Specifically, in (A), Sk represents the stroke, Vk represents the state
vector of each stroke Sk, vi,p1 and vi,p2 represents the state value of
stroke attributes and wp1 and wp2 represents the state value of winning
of the two players. (C) presents the simulation process.

4.3 Making Adjustments
In the original model, adjustments are achieved by tuning the empirical
transition matrix T . Then changes in the final scoring rates quantify the
effects for evaluation. However, according to the experts, tuning the
transition matrix means changing the playing style of a player while
giving each of his/her stroke in a rally. It is too difficult for players
to achieve the adjustments. Therefore, we tune the state vectors in
the new model. The tuned vector is calculated based on all of the
probability values in the vector. Specifically, if we want to adjust
Player 1 (P1) and need to adjust the state value vi,P1 ∈Vk, where vi,P1
is the probability value of strokes given by flick to long-forehand with
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forehand, then we need to enhance the utilization rates of tactics that
contain the aforementioned stroke at Sk. We intially increase the vi,P1
and then decrease v j,P1( j 6= i) in Vk. According to Pfeiffer et al. [24],
the function for deflection is as follows,

δvi,P1 =C+B ·A · vi,P1 · (1− vi,P1) (2)

where δvi,P1 is the change in probability; C is a constant that describes
the deflection in the border probability; B is a constant that describes
the maximum value of the relative magnitude of deflection; and A is
a normalization factor that allows the constant B to be equal to the
maximum deflection value. In the current work, the constants are set to
C = 0.05, B = 0.25 and A = 4 based on the previous work [24] to keep
the deflection value between 1%∼ 6%. The compensation function is:

δv j,P1 =−(v j,P1/(1− vi,P1)) ·δvi,P1 (3)

where δv j,P1 is the change in the probability.

PR-Curve for the two models
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Fig. 4. The evaluation between the two models. The red lines represent
the new model and the blue ones represent the old model.

4.4 Model Evaluation
A Markov chain model computes the distribution of the states at ev-
ery step, thus given the sequential data, the first-order Markov chain
and our hybrid second-order Markov chain are supposed to predict
the following states accurately. We regard it as a multi-classification
problem. At every step, we take the state with the highest probability
as the classification result and compare it with the benchmark. The
results of the two models with a single attribute are shown in Fig. 4.
The Precision-Recall Curve is adopted to evaluate the performance of
the model among all states (classes). A larger area enclosed by the PR
Curve, the x-axis, and y-axis reveals a better performance. From the
figure, we find that with the same precision, our model obtains higher
recall rates; with the same recall rate, our model has higher precision.
For stroke technique (Tec), stroke placement (Pla), and stroke posi-
tion (Pos) (Table 1), respectively, our model outperforms the original
first-order Markov chain model.

5 VISUAL DESIGN

In this section, we first introduce the design goals that guide our system
design. Then, on the basis of these goals, we illustrate the visual
encoding and interaction in our system.

5.1 Design Goal
We further derive the following design goals for the visual design in
accordance with the requirements summarized before

G1: Visual organization of all matches for overview (R1). Since
the result and players of a match are the most important information
for experts to select matches to be analyzed(R1), an overview of all
matches specified by the match score and characteristics of the players
involved can facilitate the identification of matches of interest.

G2: Visual sorting and filtering of tactics for navigation (R2). The
experts tend to pay attention to the scoring rates and utilization rates of
the tactics because these kinds of information can help find the tactics
of interest and depict the playing style of a player during navigation
(R2). Given the strength of sorting in decision making [15, 36, 37], we

employ techniques of visual sorting, as well as filtering to facilitate
navigation of these scoring rates and utilization rates .

G3: Visual enumeration of stroke for exploration (R3). The explo-
ration space of adjustments is enormous due to the diversity of strokes.
Experts hope to explore the adjustments flexibly and efficiently. There-
fore, the system should visually enumerate all optional adjustments in
a particular order for experts to choose freely and support convenient
sorting and filtering techniques to facilitate exploration.

G4: Visual recording of adjustments for evaluation (R4). The effect
of an adjustment strategy is important for evaluation (R4). Experts
hope to simultaneously evaluate both the effect and feasibility of each
strategy. Besides, they also require to compare different strategies to
identify the optimal or practical one. Therefore, it is necessary to have
an independent view to save the applied adjustments for subsequent
evaluation and comparison.

G5: Visual illustration of correlation for explanation (R5, R6). The
correlation among strokes within the match process can reveal the in-
teractions between two players. This information is indispensable for
experts to comprehend the effects of adjustments (R5) and further ex-
plain the adjustments to players (R6). However, given the multivariate
stroke attributes and complicated composition of tactics, experts always
exert considerable effort to examine the correlation. Therefore, the
effective and efficient visual illustration of the correlation is necessary.

G6: Representative icons of strokes and tactics (R2, R3, R4, R5,
R6). Icons are effective for depicting physical objects and concepts [19].
Therefore, icon-based visualizations can facilitate exploration of strokes
and tactics along with their utilization rates and scoring rates (R2, R3,
and R5). In this manner, the adjustments can be evaluated and compared
efficiently (R4), and the coaches and the players can easily understand
the processes and results(R6).

5.2 System Design
In Tac-Simur, we design a player view for match navigation (R1),
a tactic view for tactic navigation (R2), and a simulation view for
exploration of optional adjustments (R3), evaluation of adjustment
strategies (R4), and explanation of the results of adjustments (R5, R6).

In the player view, experts can select the matches of interest through
the overview of all matches for analysis (G1) (Fig. 5(A)). Then, experts
can navigate the tactics and locate those of interest for subsequent anal-
ysis by sorting and filtering in the tactic view (G2) (Fig. 5(B)). Based on
the selected tactics, experts can apply diverse adjustments to strokes in
the exploration component of the simulation view (Fig. 5(D)) (G3) and
record the adjustments they have tried in the evaluation component for
evaluation and comparison (Fig. 5(E)) (G4). To figure out the influence
and implementation of a particular adjustment, experts can obtain the
simulated competition process from the explanation component of the
simulation view (Fig. 6(A)) (G5). To facilitate analysis, we employ
metaphor-based icons to encode stroke attributes (G6).

We choose orange and cyan to represent the player to be analyzed
and his/her opponents as unified color encoding, respectively. The
detailed design for each view is described as follows.

5.3 Player View
According to the experts, when they analyze table tennis matches, they
usually first target a player and focus on the matches of him/her. Fur-
thermore, the experts tend to group together the matches where the
player’s opponents have the same handedness to draw highly specific
conclusions. Therefore, organizing the matches in a two-level hier-
archical structure (i.e., the first level is player and the second level
is handedness) can appropriately support such progressive navigation.
Given the simple topology of the hierarchical structure, we employ a
node-link tree rather than space-filling methods such as a treemap to
present the hierarchical structure of matches in the player view (G1)
(Fig. 5(A)). Each node in the tree is encoded by a circle with the play-
ers’ names or category names with a winning rate under it. Initially,
the player view horizontally shows all the players in the database for
experts to choose (Fig. 5(A1)). After experts choose a player, the cor-
responding circle will turn to orange and become the root of a tree.
The two children of the root are left-handed players and right-handed
players (Fig. 5(A2)), respectively. Experts can continue selecting left-
handed players or right-handed players to show details regarding the
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Fig. 5. The system interface. The donut charts and the pie charts encode the scoring rates and utilization rates, respectively. (A) is the player view
which displays all matches of Ito Mima and her opponents. It provides navigation of matches. (B) is the tactic view which displays the tactics specified
by stroke placement at the serve phase. It provides navigation of tactics. (C) is the simulation view which is under the exploration mode. It contains
(D), the exploration component for implementation of adjustments and (E), the evaluation component for evaluation of adjustments. (D) displays all of
the adjustment options specified by stroke placement and stroke technique. (E) displays the three optimum strategies generated by the system.

opponents as the leaves of the treemap (Fig. 5(A3)). After the experts
choose the player and his/her opponents of interest, the corresponding
matches will be selected for analysis.

5.4 Tactic View
The tactic view is a tactic list consisting of all the tactics used by the
targeted player in the selected matches. These tactics are presented by
icons of strokes (G6). They can be sorted based on scoring rates or
utilization rates (G2) and classified according to rally phases.

Icon. iTTVis [40] has provided a set of icons for the three stroke
attributes. Although the icons are well-designed, it is difficult for
experts to distinguish between the icons of the same attribute (e.g.,
stroke position) when the visual space is limited (the analysis requires
experts to inspect numbers of strokes). Therefore, we revised these
icons based on the features mentioned in [19]. The icons of each stroke
attribute are as follows.

• Stroke placement. Table tennis table is widely used to illustrate
the ball position of a stroke. Therefore, we use a half table tennis
table to encode the stroke placement, which meets familiarity,
concreteness, and meaningfulness [19]. Unlike that of iTTVis,
the half table is divided into nine grids based on the real scale of
the division criterion provided by the domain experts (Fig. 5(B1)).
The filled grid represents a certain stroke placement of a stroke.

• Stroke technique. Encoding the fourteen stroke techniques by
color or other visual channels is difficult. Therefore, we follow
iTTVis and use the abbreviation of the technique name to rep-
resent the stroke techniques (Fig. 5(B2)). This encoding meets
meaningfulness and semantic distance [19].

• Stroke position. In iTTVis, this attribute is encoded by the spe-
cific poses of players. However, this encoding is difficult to
recognize given the small size of the icon. Therefore, we use a
racket to encode the stroke position since different poses can be
represented by different means to swing the racket. This encoding
meets concreteness and meaningfulness [19]. The four different
directions denote backhand-turn, backhand, forehand, and pivot

from left to right, respectively (Fig. 5(B3)).
Tactic list. The list is used for navigating tactics for subsequent

analysis. The tactics are all described by one kind of attributes because
filtering with more attributes will severely diminish the adjustable can-
didates in the simulation view, thereby limiting exploration. Each row
of the list contains three components: the tactic (Fig. 5(B4)), the scor-
ing rate (Fig. 5(B5)), and the utilization rate (Fig. 5(B6)). The scoring
rate of a tactic is symbolized by a donut chart. The utilization rate is
presented by a bar chart. These two encodings are straightforward for
comprehension and efficient for sorting (G2).

Interaction. Sorting buttons and sliders are set above the two rates
to enable descending sorting and filtering. Besides, experts can choose
to browse tactics in different phases through the button on the right side.
Additionally, experts can click the icons on the left side to select the
tactic attribute used to depict the tactics (Fig. 5(B1, B2, B3)).

Fig. 6. The explanation mode of simulation view. (B) presents the
correlation among strokes. (C) and (H) present the former and latter two
strokes of the adjustment (E).
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5.5 Simulation View
By selecting tactics of interest in the tactic view, users can conduct
adjustments to the selected tactics in the simulation view. The sim-
ulation view consists of an exploration component (G3) (Fig. 5(D)),
an evaluation component (G4) (Fig. 5(E)), and an explanation compo-
nent (G5) (Fig. 6). Users can explore potential adjustments with the
exploration component and conduct an adjustment with the evaluation
component. Explanation of the results of the adjustments is provided
by the explanation component. Detailed descriptions are as follows.

The exploration component provides comprehensive options of
adjustments based on sorting results of each stroke (G2). This view
presents adjustment options for three consecutive strokes (a tactic) at a
time because the experts expect to take tactics into consideration while
adjusting strokes (Fig. 5(D)). We provide an optional stroke list for
each stroke (Fig. 5(D3)). Each item in the optional stroke list consists
of three components, namely, the stroke attributes, the scoring rate, and
the adjustability (Fig. 5(D1)) from left to right (R3). The icons (G6) and
the donut charts are the same as those in the tactic view. The utilization
rate is replaced by the adjustability to help assess the feasibility so as
to expedite the decision-making process. This value is first calculated
by Equation. 2 and then normalized to one. Similarly, all kinds of
strokes can be sorted by scoring rates or adjustability coefficients for
convenience (G2). The targeted player’s avatar is also placed at the left
top corner of this view with a winning rate. Once an adjustment option
is selected, the winning rate will change accordingly.

The evaluation component records the tactical adjustments made
by experts (G4). Each row contains an adjustment strategy and its
effect and adjustability (Fig. 5(E1)). Given the rally division method
used in our model, the system only supports adjustments before the
sixth stroke. The adjustments are recorded by the same icons of the
selected in the optional stroke list (G6). The effect is computed by
the improved high-order Markov chain model defined in Section 4
and simply shown with the exact value for clarity. The adjustability is
calculated by Equation. 2 and demonstrated with a bar chart.

The explanation component explains the manner in which an ad-
justment can be achieved and the reason why it performs well/poorly
(Fig. 6(A)). We simplify the simulation process of the model and present
it directly for comprehension purposes. The adjustment is placed at the
center of the view (Fig. 6(E)). Only directly related strokes, namely, two
former stroke sets(Fig. 6(C)), if they exist, and two latter (Fig. 6(H))
stroke sets are displayed here to avoid information overload. According
to the principle of the model, we connect the stroke sets with lines to
illustrate the correlation between them (G5) (Fig. 6(B)). The dashed
lines represent the influence from the former stroke sets to the current
adjustment whereas the solid lines denote the influence from the cur-
rent adjustment to the latter stroke sets (Fig. 6(F)). The line thickness
encodes the weight, λ , of the corresponding influence.

The probable strokes in each stroke set that can affect the adjust-
ment and that are already affected by the adjustment are illustrated.
The number of displayed attributes remains consistent with that of
the adjustment (Fig. 6(E)). Originally, we plan to enumerate all of
the probable strokes of each stroke set. In this way, the most detailed
information can be presented to experts. However, this method cannot
enable summarization of high-level patterns. According to experts,
high-level summaries can be accepted by players more easily. There-
fore, we eventually decide to display the correlation among stroke
attributes instead of enumerating them with progressive interactions.

The opacity of the icon encodes the influence of the corresponding
kind of strokes. For example, Fig. 6(D) illustrates that strokes hit with
reverse by the player himself/herself will lead to the adjustment most
significantly. Initially, each kind of stroke attribute works separately.
If experts click a specific attribute value, then the selected value will
be highlighted alone, whereas other kinds of attributes will be filtered
(Fig. 6(G)). In this manner, the correlation among stroke attributes can
be interactively examined (G5).

Interaction. The interaction in the simulation view is as follows.
• Changing attributes. Experts can click the legend of the icon as a

selection panel for experts to choose the attributes appearing in
the optional stroke lists (Fig. 5(C1)).

• Sorting options. Experts can click the two buttons on the top of
the optional stroke list to sort strokes.

• Organizing adjustments. Experts can generate optimum strategies
and add customized strategies through the buttons on the left top
of the evaluation component Fig. 5(E). Besides, they can also edit
the strategies and investigate each of them.

• Unfolding details. Experts can hover on the visual elements in
the simulation view for details (Fig. 5(D2)).

6 SYSTEM EVALUATION

In this section, we evaluate the usability of Tac-Simur with two case
studies conducted by the experts. We also summarize experts’ feedback
on Tac-Simur during the interview after the case studies.

6.1 Case Study
The two case studies are based on the data of 12 matches of Ito Mima
and 7 matches of Ding Ning. All of these matches are from the high-
level events including the World Cup, World Championship, and ITTF
World Tour in 2018. We deployed Tac-Simur on the web and invited
two experts to conduct case studies. Both of the experts are former pro-
fessional table tennis players. Besides, Experts A is a Ph.D. candidate
majoring in the performance analysis of table tennis and Expert B is a
professor of sports science. Both experts have collaborated with one of
the top national table tennis teams for more than five years. Before the
case studies, we introduced the system to the experts. After they got
familiar with the encoding and the interaction, they analyzed matches
by themselves. We assigned an experimenter to each expert in case the
experts forget the encodings and the interactions. The experimenter
was only responsible for answering questions about the system.

6.2 Insight 1: Consecutive Quick Attack to Long Back-
hand is the Key to Serve Rallies for Ito Mima.

This case study tends to improve Ito Mima’s performance by adjusting
her serve rallies. Ito Mima is one of the top table tennis players whose
world ranking was seventh. According to the experts, she is a young
player with great potential, thus, they were interested in her matches.

The experts first clicked the circle of Ito in player view (Fig. 5(A)).
Then, they respectively checked the left-handed players and right-
handed players and found that Ito competed with more right-handed
players than left-handed players. Therefore, to improve Ito’s overall
performance more significantly, they chose all of the Ito’s matches with
right-handed players for further simulative analysis.

Thereafter, the experts turned to the tactic view to browse Ito’s
tactics. As they indicated, the tactics used in the serve phase (i.e.,
the first three strokes of a rally) are the focal points in performance
analysis. Therefore, they directly examined the tactics in the serve
phase specified by the stroke technique. They sorted all tactics by their
scoring rates and only showed those whose utilization rates are more
than 1% through the slider to immediately identify the highly significant
tactics (Fig. 7(A1)). According to the four tactics (Fig. 7(A2)), the
experts found that in most of the tactics, Ito’s opponents’ technique
for receive is push, a control technique whereas Ito’s third technique is
topspin, an offensive technique. This matched the experts’ hypothesis
about Ito’s playing style. The expert further explained that this means
after Ito serves, she tends to attack at first. However, the scoring rates
of these tactics were inversely proportional to the utilization rates,
which means Ito’s performance in the serve phase is poor and can be
a breakthrough point for improving her performance. Therefore, the
experts further selected these tactics for adjustments.

In the simulation view (exploration mode), the experts expected to
adjust strokes from the perspective of stroke placement. They acti-
vated the stroke placement and let the system generate the optimum
adjustment strategies. The results consisting of a single adjustment
indicates that the effect (winning rate) of the adjustment applied to
the third stroke (Fig. 7(B2)) is much larger than that of the adjustment
applied to the first stroke (Fig. 7(B3)). This confirmed the experts’
knowledge. The experts explained that this is because the influence
of the first stroke on the final result is limited. Thus, no matter which
attributes we adjust at the first stroke, the final winning rate will not
be obviously affected. Hence, the experts paid attention to the other
optimum strategy (Fig. 7(B2)). They found that the original scoring
rate of the optimum adjustment at the third stroke (Fig. 7(B1)) is not
the highest among all adjustments with the same technique (Fig. 7(B4)).
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This is a new insight for the experts. Therefore, they added the ad-
justment with the highest scoring rate to the evaluation component
(Fig. 7(B5)). They noticed that the effect (winning rate) of the newly
added adjustment (Fig. 7(B2) is almost the same as the optimum one
(Fig. 7(B5)). However, considering the adjustability, they eventually
chose the optimum adjustment.

To figure out the influence and the implementation of the optimum
adjustment, the experts turned to the explanation mode. They noticed
that this adjustment mostly affects the fifth stroke (the solid line to the
fifth stroke is thicker than that of the fourth line (Fig. 7(C2)). In the fifth
stroke, Ito is most likely to use quick attack to match the quick attack
of the adjustment (Fig. 7(C5)). The experts further clicked the quick
attack in the fifth stroke and found the placement of the strokes hit by
quick attack is also long backhand, the same as that of the adjustment
(Fig. 7(C3)). They commented that this conclusion could hardly be
obtained in the past without this system. They further concluded that
this adjustment improves Ito’s performance by increasing Ito’s tactic,
consecutive quick attack to long backhand. This tactic should be
one of Ito’s dominant tactics. As for the implementation, the experts
inspected the second stroke (the dashed line from the second stroke
is thicker than that from the first stroke (Fig. 7(C1)). As Fig. 7(C4)
shows, the adjustment can be achieved mostly after Ito’s opponents
employ offensive techniques (i.e., topspin and flick) at the second stroke.
According to the experts, this suggests that Ito can still take back the
initiative through the dominant tactic even her opponents attack at first,
which matched the experts’ knowledge about Ito’ s playing style.

Through this case study, the experts concluded that coaches can focus
on training Ito’s tactic, consecutive quick attack to long backhand
at the third stroke of her serve rallies to improve her performance.

6.3 Insight 2: Topspin to Long Forehand is the Key to Re-
ceive Rallies for Ding Ning.

This case study mainly focuses on improving Ding Ning’s performance
by adjusting her receive rallies. Ding Ning is the top table tennis player
in the world and thus, the experts are also interested in her matches.

The experts chose Ding Ning to examine her matches. Since there
are only 7 matches of Ding Ning, they decided to analyze all matches
of Ding Ning. In the tactic view, they also first examined Ding’s tactics
in serve rallies from the perspective of the stroke technique. Similarly,
they sorted the tactics based on the scoring rates and only showed the
tactics whose utilization rates are more than 1%. As Fig. 8(A) shows,
the scoring rates of all tactics are proportional to their utilization rates
and most of the scoring rates are larger than 50%. The experts agreed
with this result and explained that Ding performs well during her serve
phase, thus, there is little space to improve Ding’s performance in her
serve phase. Thereafter, they turned to Ding’s receive phase of receive
rallies with the same sorting and filtering conditions. As Fig. 8(B)
shows, Ding’s tactics in the receive phase are worse compared to those
in the serve phase since the scoring rates of most of her tactics here
are less than 50% (Fig. 8(B2)). This result also matched the experts’
knowledge about Ding Ning. They explained that Ding often uses
push, a control technique while receiving the serve of her opponents,
which means Ding often fails to attack at first and loses the initiative.
They decided to take these tactics as a breakthrough to improve Ding’s
performance and chose all these tactics.

The experts activated the stroke placement in the simulation view
and let the system generate the optimum strategies at first. According
to the strategies consisting of two adjustments (Fig. 8(C)), if Ding can
use topspin, an offensive technique, while receiving the serve and keep
using topspin afterward more often, she can significantly enhance her
winning rates. The experts agreed with this strategy since consecutive
topspin within receive rallies is the tactic with highest scoring rates
(Fig. 8(B1)). However, the optimum strategy consisting of a single
adjustment at the second stroke (Fig. 8(D)) confused them. There is
an adjustment that shares the same stroke technique and scoring rate
with the optimum one and has higher adjustability in the option list
(Fig. 8(E, E1)) but it is not the optimum adjustment. To figure out the
reason, they added this adjustment to the evaluation component.

In the explanation component, the experts examined the influences
of the two adjustments separately. They noticed that the differences
between the two adjustments mainly lie in their individual influences to

Fig. 7. The figure of Section 6.2. (A) presents the tactics used by Ito
Mima in the serve phase. (B) presents the adjustment strategies in the
evaluation component. (C) presents explanation of the adjustments.

the third stroke. If Ding hits the ball to long middle, then her opponents
will hit back to long middle ((Fig. 8(E2))) while if Ding hits the ball
to long forehand, then her opponents will hit back to long forehand
(Fig. 8(D2)). This is a new insight for the experts. The experts explained
that the power of topspin of Ding can be enhanced if it is used to receive
the ball hit to forehand. Therefore, the stroke hit to long forehand will
perform better than that hit to long middle.

Through this case, the experts concluded that coaches can focus
on training Ding to receive her opponents’ serve by topspin to long
forehand to improve her performance.

6.4 Expert Feedback
We interviewed the experts individually after each case study and
summarized their feedback as follows.

Usability. According to the experts, Tac-Simur significantly facili-
tates their analysis. Expert A appreciated the exploration mode most
because the combination of multiple stroke attributes within the ad-
justments expands their exploration space. As for expert B, the visual
explanation of the simulation process impresses him most. He could
figure out not only why particular adjustment performs well/poorly,
but also how to achieve a particular adjustment. However, the experts
also mentioned two limitations of Tac-Simur during the case studies.
First, the icon of stroke position is not friendly for all users. One of
the experts often forgot the exact meaning of each icon due to his habit
of swinging the racket which is different from that of others. He often
asked our experimenter for confirmation. After using the system for
a while, He remembered the encodings eventually. The second is in-
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Fig. 8. The figure of Section 6.3. (A) presents the tactics used by Ding
Ning in the serve phase and (B) presents those in the receive phase. (C),
(D), and (E) present adjustment strategies in evaluation component. (F)
and (G) present the explanation of the adjustments.

teractions in the explanation mode. The affordance of interactions for
correlating stroke attributes is poor. The experts often investigated the
correlation among different attributes without correlating them.

Suggestion. The experts proposed two suggestions about Tac-Simur.
First, the experts hoped to add more stroke attributes to the match
simulation. Second, for more detailed analysis, the experts hoped to
access the raw videos of the matches to further verify their analysis.

7 DISCUSSION

In this section, we discuss the significance, generalizability, lessons
learned and limitations of our work.

Significance. Simulative analysis plays an important role in many
fields [42, 43], especially in competition sports (e.g., basketball [31]
and tennis [35]). We introduce a visual analytics system, Tac-Simur,
to facilitate simulative analysis of table tennis. With Tac-Simur, the
experts have discovered valuable strategies to improve players’ perfor-
mance in future matches. These strategies are appreciated and accepted
by the coaches in one of the top national table tennis teams in the world.

Generalizability. Tac-Simur can be extended to other sports that
can be simulated by our model. Our model is intrinsically a state-
transition model, therefore, it can be extended to other similar sports
whose processes can also be quantified as transitions between different
states. For example, in tennis, each shot can be treated as the state, and
the interaction between the shots of the players can be treated as the
transition process. However, as for sports like soccer and basketball,

our model can hardly be extended to them. The rules are more com-
plicated and there are more players, which means more factors should
be considered for simulation of such sports. The definition of states
and simulation process of our model is too simple for such complicated
sports. We hope to improve the generalizability in the future.

Lessons learned. We have learned three lessons through this design
study. First, for the problem domain, a pilot system is necessary. Ab-
stract domain knowledge and requirements are difficult to understand
only through meetings. A simple pilot system developed according
to existing methods can also work as a Liaison [29] to bridge the gap
between us and the experts. It can facilitate the process of identify-
ing the problem domain with the experts. Second, for the simulative
analysis, the adjustments to the variables should be restricted. Initially,
we allowed the experts to change the utilization rates of the strokes to
any values. However, such flexible exploration made the experts spend
abundant time on the trade-off between the effect of the adjustment
and the possibility of achieving the adjustment in practice. Therefore,
we provide restricted amounts of the changes to utilization rates of the
strokes which are pre-computed based on Equation. 2 during explo-
ration. Third, for the visualization, simple visual design has higher
legibility and generalizability. The major visual elements in Tac-Simur
are widely-used donut charts and bar charts instead of complicated
tailored visual encodings. Therefore, the experts can easily understand
the interface. Furthermore, the visualization of Tac-Simur can be easily
extended to other similar sports.

Limitations. The limitations of our work mainly lie in three aspects.
First, our dataset is too small to conduct analysis on more players.
The training of the new model usually requires data of more than five
matches since more stroke attributes are included. However, for most of
the players in our dataset, we only have the data of one or two matches.
Therefore, in the future, we will collect more data of different players.
Second, the model only considers the three most significant attributes,
namely, stroke position, stroke techniques, and stroke placement while
ignoring several other stoke attributes, such as stoke effect, stoke spin,
and stoke action. There is still much room for improving the model to
make it more comprehensive by integrating more attributes. However,
such integration may lead to sparse matrices and vectors. In the future,
we plan to explore how to integrate more attributes into the model
while solving the spareness issue. Third, the visual design of the
explanation mode cannot display multiple adjustments together. One
adjustment is related to four strokes, thus the relationships among an
entire adjustment strategy are complicated and difficult to visualize
clearly. However, only presenting one adjustment of a strategy limits
the comprehension of the whole strategy. In the future, we plan to
explore and study how to visualize a whole strategy in one view clearly.

8 CONCLUSION

In this work, we identify the problem domain of tactic-based simulative
visual analytics of table tennis. We subsequently introduce a hybrid
second-order Markov chain model to simulate matches more adequately.
Further, based on the model, we develop a visual analytics system
named Tac-Simur to help facilitate simulative analysis.

In the future, we plan to improve this work from two aspects. First,
we will try to expand our dataset. On the one hand, we will continue
collecting data from various events such as the upcoming Liebherr
2019 ITTF World Table Tennis Championships. On the other hand, we
plan to deploy our systems including a data collection system online
for table tennis teams to use. In this manner, we can include not only
the match data but also the training data. Second, we will try extending
our model to other sports like tennis, badminton, and even soccer. We
hope to construct a more general model that can simulate most of the
ball games in competitive sports. We hope to figure out the features
shared by ball games during simulative analysis and provide general
guidelines for simulative visual analytics of ball games.
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