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Fig. 1. The devices we used in this work. A is a customized ball with six markers. B is a ball machine assisting the multi-ball training. C
is a high-speed camera for speed and spin annotation. D displays the mounting method of IoT devices on a trainee’s body. The axis
directions are displayed in yellow. The direction of Z axis in right arm, right wrist, and left wrist is perpendicular to the figure, from inside
to outside. E is the circuit board of the devices in D.

Abstract— Conventional racket sports training highly relies on coaches’ knowledge and experience, leading to biases in the guidance.
To solve this problem, smart wearable devices based on Internet of Things technology (IoT) have been extensively investigated to
support data-driven training. Considerable studies introduced methods to extract valuable information from the sensor data collected
by IoT devices. However, the information cannot provide actionable insights for coaches due to the large data volume and high data
dimensions. We proposed an IoT + VA framework, Tac-Trainer, to integrate the sensor data, the information, and coaches’ knowledge to
facilitate racket sports training. Tac-Trainer consists of four components: device configuration, data interpretation, training optimization,
and result visualization. These components collect trainees’ kinematic data through IoT devices, transform the data into attributes and
indicators, generate training suggestions, and provide an interactive visualization interface for exploration, respectively. We further
discuss new research opportunities and challenges inspired by our work from two perspectives, VA for IoT and IoT for VA.

Index Terms—IoT, racket sports, training, sensor data, visual analytics

1 INTRODUCTION

Racket sports, such as table tennis, badminton, tennis, etc., are
technique-centric sports that require players to coordinate their bodies
to use different strengths, speeds, or spins to hit the ball [77]. Therefore,
during the training, coaches are most concerned with trainees’ motions
when they hit the ball. Conventionally, coaches monitor trainees’ mo-
tions by eyes or through videos and give suggestions based on their
experience and knowledge during the training. However, coaches can
only observe trainees’ motions from a macroscopic perspective, lack-
ing microscopic details. For example, they can observe that a trainee
swings the racket, but they cannot know the exact speed and angle of
the racket. To solve this problem, smart wearable devices based on the
Internet of Things (IoT) technology have been widely investigated to
provide a data-driven method to alleviate the biases caused by coaches’
knowledge and experience [10, 15, 77].

Current IoT devices collect trainees’ training data by using inertial
sensors, which are attached to the trainees’ bodies to record the acceler-
ation and velocity during their movements. Fig. 2 presents an example
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of the data collected by a 9-axis inertial sensor in 2 seconds. Con-
siderable studies have introduced various methods to extract valuable
information such as trainees’ skill levels [9, 16], technical attributes of
actions [53, 83], etc., from the sensor data. However, given the large
data volume and various dimensions, it is still hard for users to obtain
actionable insights for the training from the information. A visual
analytics system that integrates the sensor data, the information, and
coaches’ knowledge for training analysis is urgently needed. Therefore,
we propose an IoT + visual analytics (VA) framework, Tac-Trainer, to
facilitate racket sports training.

We encountered two challenges when developing Tac-Trainer. The
first is how to coordinate the sensor data and the information extracted
by models for coaches. The sensor data contains the most comprehen-
sive details, but it is unintelligible to coaches. The extracted information
is straightforward, yet it loses some details during the processing of
the models. Integrating the advantages of these two types of data for
coaches is a challenge. The second is how to provide effective and
efficient analysis for coaches. Coaches pay special attention to the
timeliness of training feedback. They prefer to discover the trainees’
problems as soon as possible to adjust their training plans in time. Once
the problems are found late, both the coaches and trainees may forget
the details of the problems. However, the large volume and the high
dimension of the data are barriers to efficient analysis.

We collaborated with three experts: a professor and a postdoctoral re-
searcher analyzing table tennis and a Ph.D. candidate majoring in tennis
to develop Tac-Trainer. All experts were professional players, and the
professor and the researcher are experienced coaches and have served
as data analysts for the Chinese national table tennis team for years.
To solve the first challenge, we conducted interviews with our experts
and summarized their requirements and considerations about the re-
quired data for analysis. To solve the second challenge, we proposed an
IoT+VA framework, Tac-Trainer, for training. Tac-Trainer contains four
components (Fig. 3): device configuration, data interpretation, training



optimization, and result visualization. Data configuration configures
the IoT devices for data collection. Data interpretation transforms the
sensor data collected by IoT devices into semantic training information,
including the technical attributes and performance indicators of actions.
Training optimization helps coaches assess trainees’ actions based on
the semantic training information and generates optimization sugges-
tions for the poorly-performed actions. Result visualization visualizes
the process and results of data interpretation and training optimization
to facilitate data exploration and interpretation in real-time. When de-
veloping Tac-Trainer, we found several new research directions in IoT
+ VA. We discussed the opportunities and challenges in these directions.
The contributions of this work are as follows:

• We combined IoT devices and visual analytics technology to
solve a domain problem. Our design study can be applied to solve
problems in other domains.

• We established Tac-Trainer, an IoT + VA framework for racket
sports training.

• We implemented a proof-of-concept system for table tennis train-
ing based on Tac-Trainer and conducted two use cases.

Fig. 2. The data collected by an IoT device fixed on a trainee’s racket
when he performed a stroke in 2 seconds.

2 RELATED WORK

In this section, we first review related works of IoT-based sports training.
Then, since our data is similar to that of motion analysis and related
to sports analysis, we further review the motion data visualization and
sports data visualization.

2.1 IoT-based Sports Training
IoT technology has been widely applied to the training of diverse
sports. For example, miPod [17] and miPod2 [15] are portable sensor
systems that can be embedded into clothes and sports equipment to
collect players’ motion data. In addition, Xia et al. [83] proposed a
wristband system to detect and recognize strokes in multiple racket
sports, including badminton and table tennis. Moreover, similar systems
are developed for particular sports including soccer [55], badminton
[77], skateboarding [36], etc.. With the systems, researchers can collect
the kinematic details of players’ motions for analysis.

A popular problem in analyzing such data is action recognition. Lu
et al. [55] used an SVM-based classifier to recognize the passing and
shooting of soccer players. Besides, Blank et al. [16] also used SVM
to classify different stroke types in table tennis. Similar analyses are
also conducted in other sports, such as basketball [56] and golf [58].
Another frequently studied topic is skill assessment. Wang et al. [77]
employed a PCA+SVM method to differentiate the skill of elite and
amateurs. Ahmadi et al. [10] assessed the skill level of different players
by plotting their data in a three-dimensional coordinate system. Other
topics, such as jump frequency estimation in volleyball [40] and speed
and spin estimation in table tennis [14] are also investigated by many
researchers. However, the valuable information extracted by these

studies cannot provide actionable insights for coaches due to the large
data volume and various dimensions.

Currently, considerable commercial smart devices have been intro-
duced for the training of sports, such as table tennis [1,3], badminton [5],
tennis [2, 4, 6], etc. These devices are either mounted or embedded into
the equipment to collect trainees’ kinematic data. With the data, they
present various statics, such as number of shots, ball impact location,
speed of swing, etc., by using basic visualization charts. Although these
products can provide straightforward training feedback for trainees,
they cannot help discover valuable training insights since they only
present the basic statistical results. The fine-grained training process is
not available for further exploration and investigation. To solve these
problems, we took racket sports as an example and propose an IoT +
VA framework named Tac-Trainer. Tac-Trainer can integrate the sensor
data and the information extracted by current studies for coaches to
facilitate visual analytics of IoT-based training. We referred to the
related studies on racket sports and implemented Tac-Trainer in the
domain of table tennis.

2.2 Motion Data Visualization
Analysis of the motions of moving objects has been extensively stud-
ied [23, 33, 41, 46, 57, 78]. There are considerable approaches to the
visualization of motion data. The survey by Bernard et al. [12] has
provided a detailed review of related studies. It classified existing meth-
ods from three aspects that affect the design of visualizations, namely,
the granularity of data, the scope of objects, and the concept to be
analyzed. These methods solve various domain problems. Krekel et
al. [47] combined 3D skeletons with 2D plots to visualize the motions
of multiple joints of the upper extremity. FuryExplorer [79] visualizes
horse motions based on three granularities, trajectories, poses, and
markers on horses. Motion Browser [22] integrates and visualizes
muscle signals, motion data, and videos to help physicians analyze
brachial plexus injuries. Other studies such as MotionExplorer [13],
MotionFlow [39], GestureAnalyzer [38] also provide efficient tools
to investigate kinematic features of motions. However, methods for
analyzing the motion data in sports training are rarely studied. Al-
though our task to investigate the characteristics of players’ motions is
similar to existing methods, our goal is to help coaches obtain training
feedback and adjust training plans efficiently, which existing methods
cannot support.

2.3 Sports Data Visualization
Sports data visualization has been a popular topic in recent years.
Several surveys [29, 66, 87] have provided a holistic view of the state-
of-the-art methods for match analysis in various sports. For example, in
soccer, researchers introduce efficient tools to investigate team tactics
(e.g., formations [82], pass styles [85], and moving trajectories [11]),
rankings [63, 65], game videos [71, 72], key events [20, 64], and match
performances [70]. Besides, another popular sport, basketball, has also
been widely studied. The spatial characteristics of players are often an-
alyzed when investigating shooting abilities [31], defense abilities [30],
movement patterns [73], and point prediction [21] in basketball matches.
Losada et al. [54] introduced a comprehensive match analysis tool and
Chen et al. [25] and Zhi et al. [89] developed storytelling tools for
basketball. In other sports, such as baseball [60], rugby [37], bad-
minton [28, 88], tennis [68, 69], table tennis [26, 49, 50, 75, 76, 81], ice
hockey [67], snooker [61], etc., various tools are also proposed to facili-
tate technical and tactical analysis. Insights into players’ performances,
team strategies, tactic effects, etc., during matches, are revealed with
these tools. Readers can refer to the surveys for details. However,
these studies cannot directly solve our problems since they target the
analysis of formal matches instead of the training process. Our data
and requirements are different from theirs. Specifically, our data is
collected by inertial sensors, whereas match data is usually collected by
cameras with automatic (computer vision algorithms) or manual (video
labeling) methods. Moreover, coaches are concerned about how to
improve the quality of particular techniques or tactics when analyzing
the training process. In contrast, in match analysis, analysts concentrate
on how to employ different techniques and tactics to win a game.

In addition to match analysis, topics about personal visualization
for sports activities [52, 86] have also been widely investigated. These



studies explore the design space of activity tracking products, such
as Apple watch 1 and Fitbit 2. However, similar to the application of
smart devices [1–6], the visualizations of the products only present
basic statistics, such as heartbeat rate and calories. The design space
and methods of these visualizations cannot be applied to our condition.

Wu et al. [80] combined virtual reality (VR) devices with a haptic
feedback racket to provide intuitive cues for trainees in table tennis. In
addition, Oagaz et al. [59] also introduced a VR system for table tennis
training. The system integrates a VR helmet with a depth camera to
create an immersive training environment. However, these systems are
designed for helping beginners acquire new skills, which is different
from our goals to improve professional players’ performance. Besides,
we target a real-world training instead of a virtual environment. There-
fore, we referred to prior studies and proposed an IoT + VA framework,
Tac-Trainer, for the IoT-based training in racket sports.

3 BACKGROUND

This section introduces related knowledge about racket sports and our
interviews with experts.

3.1 Racket Sports
Racket sports (e.g., table tennis, badminton, tennis) are popular around
the world, with hundreds of millions of participants [7]. In racket
sports, two (or four for doubles) players use rackets to hit a ball to
each other [51]. Each hit is called a stroke, which is the elementary
observation unit in racket sports.

3.2 Expert Interview
We collaborated with three experts, namely, a professor (E1), a post-
doctoral researcher (E2), and a Ph.D. candidate (E3). E1 and E2 have
studied table tennis for more than 18 and 5 years, respectively. E3 has
majored in tennis analysis for more than three years. All of them were
professional players. Besides, E1 and E2 are experienced coaches and
have provided data service for the Chinese national table tennis team
for more than five years. We conducted one-on-one interviews with
them. The interviews are summarized as follows.

Multi-ball training occupies the most time in training. We first
asked our experts about the content of regular training. According to E1
and E2, the regular training often consists of physical training (20%),
single-ball training (35%), and multi-ball training (45%), which is
similar to tennis. Physical training often contains some machine exer-
cise. Single-ball training requires a trainee to play against one or two
opponents. Multi-ball training requires a trainee to hit back the ball
with particular techniques continuously. The ball will be served to the
trainee one by one without a break. This part aims to improve play-
ers’ mastery of particular techniques [32]. According to our experts,
it occupies the most time during the training since mastering differ-
ent techniques is the foundation of successful tactics and strategies.
Therefore, we mainly focus on multi-ball training.

Speed, spin, and placement of the ball are the most important
factors. Then, we collected the most important factors they care about
during multi-ball training. According to E1 and E2, speed, spin, and
placement of the ball play important roles when assessing a trainee’s
stroke. These three factors differentiate techniques in table tennis [84],
leading to different effects of a stroke. Among these factors, spin is
the most important since it can control the ball trajectories due to the
Magnus effect [48]. Similarly, in tennis, E3 indicated that coaches
often focus on the speed and the placement of the ball. They also pay
attention to the spin when trainees practice special techniques, such
as slice and drive. If trainees’ strokes do not meet the requirements in
these three factors, coaches will give suggestions on their motions.

Motions of upper extremities are critical. We further asked about
coaches’ suggestions of trainees’ motions. E1, E2, and E3 all said that
they paid more attention to the motions of trainees’ upper extremities,
especially the wrists and arms [35]. Although a player’s footwork was
also important, the decisive motions affecting the stroke quality were
those of the upper extremities. For example, in table tennis, if a trainee
raises his/her elbow too high when hitting the ball, the ball will be hit

1https://www.apple.com/watch/
2https://www.fitbit.com/global/hk/products

out of the table. Similarly, in tennis, a wrong motion of the wrist can
not only affect the stroke performance but also hurt the wrist. Therefore,
during the training, coaches often help trainees to correct their motions
of the upper extremity.

Specific speed and spin and accurate suggestions are needed.
After that, we collected two pain points during the multi-ball training.
First, they mentioned the acquisition of the specific speed and spin of
trainees’ strokes. They told us that the placement is easy to evaluate
since they can know whether the ball is hit to the right placement by
their eyes. However, the speed and spin are difficult to judge. They
can distinguish the high-speed strokes from the low-speed ones and
the high-spin strokes from the low-spin ones, but they cannot tell the
exact speed and spin. Second, they mentioned that their suggestions to
trainees were based on their experience and knowledge, which did not
always work. They can only observe a trainee’s motions with their eyes,
lacking the accurate quantitative details. For example, they observed
that a trainee swung the racket too low, but they did not know the
specific height and angle of the racket trajectory, which hindered them
from giving accurate suggestions to the trainee.

Intuitive tools should be proposed. At the end of the interviews, we
introduced several IoT-based training methods for them. We told them
that these training methods could solve the problem of quantitatively
assessing speed and spin. They presented much interest in the methods,
but the complex data, algorithms, and models are difficult for them
to apply to practical training. They hoped that an intuitive tool that
coordinates all the data and methods for them to conduct efficient
training analysis could be developed.

4 FRAMEWORK

This section introduces the design considerations and the details of
Tac-Trainer.

4.1 Design Considerations
We summarized five design considerations for Tac-Trainer and iterated
the considerations with our experts [8]. The details are as follows.

• C1: Configuring appropriate devices. Configurations such as
parameters and mounting positions of devices should be carefully
considered since these factors can influence the quality of the
collected data. For example, if the mounting positions are wrongly
chosen, the kinematic features of particular actions cannot be
obviously reflected in the data.

• C2: Extracting meaningful data. Extracting the meaningful
motion data from the raw sensor data is essential for further anal-
ysis. The raw sensor data records all details of players’ motions.
It inevitably contains some meaningless information, such as mo-
tions during warm-up. We need to remove these useless data by
detecting and extracting the data of meaningful motions such as
strokes in racket sports.

• C3: Recognizing technical attributes. The extracted data is still
too abstract for coaches to understand. We should recognize the
technical attributes of the actions based on the extracted data. For
example, during multi-ball training of table tennis, the technique
(e.g., topspin, push, etc.) and position (forehand, backhand, etc.)
of each stroke should be recognized. With the technical attributes,
coaches can understand the basic meaning of the sensor data.

• C4: Estimating important indicators. Only recognizing the
technical actions is not enough for training analysis. According
to the interviews, factors such as speed and spin of a stroke are
important indicators for coaches to assess training quality. Quan-
titatively estimating these indicators can help coaches provide
accurate suggestions for trainees, solving a pain point for coaches.

• C5: Assessing training quality. Multi-ball training requires
trainees to hit the ball continuously with high frequency. Coaches
cannot assess each stroke efficiently even they know the quanti-
tative value of the speed and spin of the stroke. Therefore, we
should provide methods to help assess each stroke efficiently so
that coaches and trainees can obtain feedback in time.



Fig. 3. The overview of Tac-Trainer. The whole framework contains four components: Device Configuration, Data Interpretation, Training Optimization,
and Result Visualization. Device configuration configures IoT devices to collect the required data adequately. Data interpretation takes the sensor
data as input. It detects and extracts the meaningful actions (1), recognizes the technical attributes (2), and estimates the values of the key indicators
(3). With these results, trainin optimization first assesses the quality of each action (4) and then generates suggestions for the bad actions (5). Result
visualization is responsible for visualizing all processes and results (1, 2, 3, 4, 5).

Fig. 4. The parameters of the device (WT901WIFI) we use. The table presents eight important parameters. Readers can visit the website:
https://www.wit-motion.com/iot-gyroscope/witmotion-wt901wifi-wireless.html for more details.

• C6: Generating data-driven suggestions. According to the
interviews, coaches often provide knowledge-driven suggestions
for trainees. However, such suggestions do not always work and
sometimes are biased. Therefore, we should provide data-driven
suggestions for coaches. By integrating knowledge and data,
coaches can provide more effective suggestions for trainees.

• C7: Designing intuitive visualizations. Visualization is an ef-
ficient and effective way to bridge the gap between complex
data and users. Visualization of the results of C2-C6 can facili-
tate coaches’ interpretation and application of IoT-based training
methods. However, an issue needs to be carefully solved: the
visualizations should be intuitive for coaches. Basic charts and
metaphor-based design are good choices for this issue.

4.2 Framework

We proposed Tac-Trainer based on the seven considerations. The
framework contains four components, data interpretation, training opti-
mization, and result visualization, as Fig. 3 shows.

Device Configuration configures the IoT devices for data collection.
It mainly considers the sensors (e.g., gyroscope, magnetic sensor), the
parameters (e.g., frequency, size, precision, etc.), the number, and the
mounting position (e.g., wrist, arm, leg, etc.) (C1).

Data Interpretation takes the raw sensor data as input and pro-
cesses the data in three steps. First, it cleans the data by detecting and
extracting the data of meaningful actions such as strokes in table tennis
(C2). The cleaned action data (Fig. 3(1)) is fed to attribute recognition
(C3) and indicator estimation (C4). These two steps output the critical
technical attributes (Fig. 3(2)) and indicators (Fig. 3(3)). For example,
in table tennis, these two parts output attributes such as stroke technique
and indicators such as stroke speed.

Training Optimization contains two steps: quality assessment (C5)
and suggestion generation (C6). First, it assesses the quality of each
stroke based on the technical attributes and indicator values and detects
poorly-performed strokes (Fig. 3(4)).Then, it generates optimization
suggestions (Fig. 3(5)) for the poorly-performed strokes. Coaches can
refer to these suggestions to improve trainees’ performances.

Result Visualization is responsible for visualizing (C7) the results
of data interpretation and training optimization (Fig. 3(1, 2, 3, 4, 5)).
Moreover, it also provides interactions to help coaches explore and
integrate their knowledge into the analysis process.

5 IMPLEMENTATION

This section illustrates the implementation of Tac-Trainer in table tennis.
Device configuration, data interpretation, and training optimization are
introduced first. Then, we present the system of result visualization.

5.1 Device Configuration

We used existing IoT devices, WT901WIFI 3 developed by WitMotion
4 (Fig. 1E) to collect players’ motion data during their training. Each
device is portable enough (size: 51mm∗36mm∗15mm, weight: 20g)
so that the influence of devices on players’ performance is decreased as
much as possible. Each device contains a 9-axis gyroscope collecting
the three-dimensional acceleration, angular velocity, and angular of a
moving object as shown in Fig. 2. It can transmit the collected data
through WiFi at up to 200Hz. During our implementation, we set the
frequency to 20Hz since 20Hz was enough to collect trainees’ detailed
kinematic features. Besides, with a built-in battery, it can continuously
work for two hours. The detailed parameters are shown in Fig. 4.

3https://www.wit-motion.com/iot-gyroscope/witmotion-wt901wifi-
wireless.html

4https://www.wit-motion.com/



During the training, we used four such devices and fixed them on
the trainee’s right arm, right wrist, left wrist, and racket handle,
respectively. The axis directions are shown in Fig. 1D and remain
consistent in this work. We fixed devices on trainees’ upper extremities
given the interview with our experts. Moreover, we chose the four
points by trial and error. In the beginning, we thought one device on
the racket was enough. However, when training the data processing
models, we found using data of multiple devices can improve the model
performances. Therefore, we finally decided to use four sensors.

Table 1. The performance of the stroke detection model.

Precision Recall Accuracy F1 Score

0.998 0.998 0.995 0.998

Table 2. The accuracy of different models in attribute recognition.

LSTM RF DF21 XGBoost LightGBM

Position Acc. (%) 100 100 100 99.67 100
Time. (s) 53.8 2.4 18.8 6.9 8.2

Technique Acc. (%) 99.67 100 100 99.33 100
Time. (s) 54.7 1.8 19.3 2.8 3.6

5.2 Data Interpretation
In table tennis, data interpretation detects and extracts valid strokes,
recognizes stroke attributes, and estimates stroke speed and stroke spin
based on the raw sensor data. To estimate the stroke speed and spin, we
used additional auxiliary devices for data annotation.

5.2.1 Auxiliary Devices
The auxiliary devices for data annotation include multiple customized
balls (Fig. 1A), a ball machine (Fig. 1B), and a high-speed camera
(Fig. 1C) as follows. These devices were not used in the final system.

• Customized ball. We drew six markers on each ball (i.e., top,
bottom, left, right, back, and front) as Fig. 1A presents. The
markers can assist the high-speed camera (Fig. 1C) in measuring
the speed and spin of the ball. The measured data worked as
ground truth to train the model for estimating speed and spin.

• Ball machine. We used a ball machine to conduct multi-ball
training Fig. 1B. The ball machine can serve the ball with various
speeds, spins, and placements. The speed can be set up to 5m/s.
The spin can be set up to 50r/s (both backspin or topspin). The
placement can cover all of the half table. We used a remote
controller to control the type of strokes it served.

• High-speed camera. We used a high-speed camera to measure
the ground truth of the speed and spin of the ball. According
to Blank et al. [14], the frame rate of the high-speed camera
should be higher than 500Hz. Otherwise, the ball would be blurry,
hindering the measurement. Therefore, we selected a camera
whose frame rate was 1000Hz and resolution was 640∗480 pixels.
The captured video was black and white.

5.2.2 Stroke Detection and Extraction
We employed a simplified version of the method of Blank et al. [16]
to detect the valid strokes. Readers can refer to the paper for more
details. The raw sensor data consists of multi-dimensional discrete
signals (Fig. 2). Therefore, according to Blank et al. [16], detecting
strokes equals detecting the peaks Pi in signals. We used acceleration
signals of the racket to detect peaks since explicit peaks existed in all
axes of the acceleration signals (Fig. 2). The detection process contains
two steps: energy computation and peak detection. First, we calculated
the energy of the acceleration signal at t as follows,

E(t) = accx(t)2 +accy(t)2 +accz(t)2 (1)

where accx(t),accy(t),accz(t) represent the signal value of X-axis,
Y-axis, and Z-axis at t. After this step, the peaks were highlighted
and more obvious than before. Second, we employed a peak detection
algorithm to find the peaks in the signals. Here, we used the sig-
nal.find peaks function in the python package, SciPy 5. We did not use
a high-pass Butterworth filter to amplify the peaks further [19] as Blank
et al. [16] did because the peaks were explicit enough to be detected
after the first step. Therefore we removed the filter to save time. We
used 845 labeled strokes to test the performance of the stroke detection
method. During the test, the method performed well, with only two
strokes missed and two strokes wrongly detected. The precision, recall,
accuracy, and F1 score of the test are presented in Table. 1.

With the detected peaks P = {P1, ...,Pn}, we extracted the data of all
strokes S = {S1, ...,Sn} by setting a range for each peak. Specifically,
for the ith peak Pi, the range was [tPi −δ t, tPi +δ t], where tPi was the
timestamp of Pi and δ t was a customized duration. We set δ t to 0.75s
which was longer than that of Blank et al. [16] since we wanted to
save enough data to estimate the speed and spin accurately. In this way,
the signal of each axis of the ith stroke Si contains 30 sampling points
(20Hz∗ (0.75s+0.75s) = 30points), and the sensor data of Si can be
depicted by a tensor Vi, where Vi ∈ R4(devices)×9(dimensions)×30(points).

5.2.3 Attribute Recognition
We mainly recognized two kinds of technical attributes: stroke posi-
tion and stroke technique in table tennis. Stroke position represents a
player’s position when he/she hits the ball. Stroke technique represents
the technique a player uses to hit the ball. Here, we focused on the two
most common stroke positions (i.e., forehand and backhand) and the
three most common stroke techniques (i.e., topspin, push, and short)
during training. To accurately recognize the attributes, we tried five
state-of-the-art models: LSTM [34] (we added a full connected layer to
an LSTM network), DF21 [91], random forest [62], XGBoost [24], and
LightGBM [43]. The input was Vi, and the label was the corresponding
stroke position Posi and stroke technique Teci of Si as follows,

Fr(Vi) = (Posi,Teci) (2)

where Fr was the recognition model. Stroke position and stroke tech-
nique rarely change during training. Therefore, it can be easily labeled
for model training. We finally labeled 100 strokes for each technique
and position. We used 10-fold cross-validation to evaluate the perfor-
mances of different models. Table 2 presents the accuracy and training
time of each model. Although the accuracies of all models were 100%,
except XGBoost [24], the training time of random forest [62] outper-
formed others. Therefore, we finally chose random forest [62] as the
model for attribute recognition.

5.2.4 Speed & Spin Estimation
We estimated the speed and spin of the ball since these are significant
indicators for coaches, according to our experts. Previously, Blank et
al. [14] created a well-established physical model to estimate these two
indicators. However, this method is sensitive to physical coefficients.
For example, if the friction coefficient and restitution coefficient of the
racket rubber is not measured accurately, the error of the results can be
large. These coefficients need to be measured manually by analysts,
which inevitably introduces deviations to these coefficients. Therefore,
we did not refer to the physical models. Instead, we constructed a
regression model to estimate the speed and spin based on the sensor
data. After training, the model can estimate the indicators without
additional coefficients.

The input of the model was Vi and the output was the speed Spdi
and spin Spni of Si as follow,

Fe(Vi) = (Spdi,Spni) (3)

where Fe was the estimation model. We labeled the speed and spin
of each stroke based on the customized ball (Fig. 1A) and high-speed
camera (Fig. 1C). The camera captured the detailed movement of mark-
ers on the ball. With the videos, we developed an annotation tool to

5https://scipy.org/



label the speed and spin. We finally labeled 100 strokes for topspin,
push, and short, respectively. We labeled strokes of different techniques
because there is a great difference in the speed and spin among dif-
ferent techniques, as Table. 3 shows. We tried the same five models
as in attribute recognition. We used mean absolute percentage error
to evaluate the performance of each model. The detailed evaluation
results are presented in Table. 4. We found that random forest [62] has
the smallest error in both speed estimation (8.6%) and spin estimation
(7.21%), outperforming other models. Therefore, we finally chose
random forest [62] as the regression model. We interviewed our experts
about the acceptance of the error. The experts said that they could
accept such error that is less than 10% since what they wanted to do is
not to tell 10.1m/s from 10.2m/s, but to tell 10m/s from 11m/s.

Table 3. The statistics of speed and spin of different techniques.

Topspin Push Short All

Speed Avg. (m/s) 11.13 6.19 3.83 7.05
Std. (m/s) 0.98 1.52 0.38 3.22

Spin Avg. (r/s) 106.64 50.80 31.01 62.82
Std. (r/s) 6.44 10.77 3.20 32.89

Table 4. The estimation error of speed and spin.

LSTM RF DF21 XGBoost LightGBM

Speed Avg. (%) 9.37 8.60 8.80 9.69 9.20
Std. (%) 1.64 1.50 1.80 1.85 1.93

Spin Avg. (%) 7.74 7.21 7.66 7.69 7.91
Std. (%) 1.34 1.42 1.33 1.83 1.21

5.3 Training Optimization
Training optimization helps coaches assess the quality of each stroke
and generate optimization suggestions.

5.3.1 Quality Assessment
Coaches’ knowledge is important when assessing different types of
strokes. However, coaches’ knowledge is too complex to be precisely
quantified for automatic assessment. Therefore, we provided an inter-
active method for coaches to integrate the aforementioned information
and their knowledge to find the poorly-performed strokes as follows,

Fa(Fr(V ),Fe(V ),K) = pS (4)

where Fa was our assessment method, V = {V1, ...,Vn} was the set
of the sensor data of all strokes S, K was coaches knowledge, and
pS = {pS1, ..., pSm} was the set of all poorly-performed strokes. The
details of the assessment method are introduced in Section 5.4.2.

5.3.2 Suggestion Generation
We referred to the concept of counterfactual to generate suggestions
for training optimization because counterfactual can provide human-
friendly explanations for machine learning models [74]. It can generate
data instances that satisfy a desirable model prediction. We applied the
method of Cheng et al. [27] to suggestion generation. The input was
the sensor data of a poorly-performed stroke pSq (pSq ∈ pS). We used
pVq (pVq ∈R4(devices)×9(dimensions)×30(points)) to denote the sensor data
of pSq. During the generation, the method would try to optimize the
elements of pVq to make pSq be assessed as a good stroke by Fa. The
fewer elements revised, the better an optimization was. The final
output was a set oVq = {oV 1

q , ...,oV r
q } that contained the top r best

optimizations the method has tried. The function was as follows,

Fs(pVq) = oVq (5)

where Fs was the counterfactual function. We used oV s
q (oV s

q ∈
{oV 1

q , ...,oV r
q }) to denote an optimization. oV s

q is an optimized re-

sult of pVq, with only several elements different from pVq. It is in the
same form of pVq and works as a suggestion to tell how to adjust the
motions to improve stroke qualities. To make oV s

q intuitive for coaches,
we visualized oV s

q (Fig. 6J) to help coaches understand the suggestions.
We introduced the visualization design in Section 5.4.3. Moreover, we
calculated a feasibility value for each suggestion. Specifically, we used
the reciprocal of the distance between a pVq and oV s

q to measure the
feasibility of oV s

q as follows,

Ff (oV s
q ) =

1
Dist(pVq,oV s

q )
(6)

where Dist() was the function that calculated the Euclidean distance of
two tensors. In this way, if oV s

q is similar to pVq, Ff (oV s
q ) will be large,

which naturally means the feasibility of oV s
q is high.

Fig. 5. The usage scenario of Tac-Trainer in case 1. During the training,
a trainee needs to wear the devices (A), and the system visualizes the
data from the devices in real-time (B)

5.4 Result Visualization
Result visualization visualizes all the processes and results of data
interpretation and training optimization. The visualization system can
help coaches efficiently monitor and adjust the training process.

5.4.1 System Overview
The whole system contains two views, a training view and a suggestion
view (Fig. 6). The training view visualizes the recognized technical
attributes and the estimated speed and spin of each stroke. Moreover,
coaches can interactively assess the quality of each stroke in this view.
If the coach finds a poorly-performed stroke, he/she can select it for
optimization. After selection, the suggestion view visualizes multiple
optimization suggestions for the stroke. Coaches can evaluate the
feasibility of each suggestion and choose the best one. We used React.js
to develop the frontend and Python to develop the backend.

During the training, a trainee needs to wear the IoT devices as
required (Fig. 5A) and a coach needs to connect the system with the
devices through Wi-Fi. After switching on the devices, the system
will immediately receive the data from the devices. With the data,
the system will automatically recognize the attributes and estimate
the indicators. The results of the attributes and indicators will be
simultaneously visualized in the system (Fig. 5B). In this way, the
coach can monitor the trainee’s performance in real-time and provide
feedback for the trainee as soon as possible.

5.4.2 Training View
The training view visualizes the detected strokes and their technical
attributes and indicators in the form of a flow. Each flow presents all
strokes within a multi-ball training (Fig. 6C). We use a glyph to encode
each stroke in a flow. The detailed encoding is as follows.

• Speed & spin: We used the metaphor of a dashboard to encode
the speed and spin of a stroke (Fig. 7) since both indicators are
related to the concept of velocity. The arc length encodes the
value of the speed/spin. We used yellow to represent speed and
red to represent spin. This color encoding is unified in the system.



Fig. 6. The interface of Tac-Trainer for table tennis. The system contains two views, a training view, and a suggestion view. The training view
visualizes the strokes in a training session through a customized flow (C) consisting of a metadata panel (A), a control panel (B), and a stroke flow
(F). The suggestion view provides a list of optimization suggestions (J) for a poorly-performed stroke (G). Each suggestion can be explored in a
3-D coordinate (K). The interface presents the details of Case 1. E is the first training session and D is the second. G is the stroke chosen for
optimization. L is the optimization suggestion chosen by the coach.

• Stroke technique: There are fourteen stroke techniques in table
tennis (e.g., topspin, push, etc.). According to Wang et al. [75],
using identity channels to encode this information is difficult since
it contains too many categories. Therefore, we referred to their
works and encoded techniques by their abbreviation (Fig. 7B).

• Stroke position: There are four stroke positions in table tennis,
namely, forehand, backhand, pivot, and back turn. They represent
players’ poses when hitting the ball and players’ relative positions
to the table. Therefore, we used position channels to encode them.
As Fig. 7C shows, we used four arcs to encode the four stroke
positions. The highlighted arc represents the stroke position of a
particular stroke, which is similar to Wang et al. (Fig. 7).

The whole flow consists of three parts: a metadata panel (Fig. 6A), a
control panel (Fig. 6B), and a stroke flow (Fig.6F).

The metadata panel (Fig. 6A) displays the basic information of
a training session. It includes the training ID and the avatar of the
trainee. The control panel (Fig. 6B) controls the start and end of a
training session. Moreover, it uses bar charts to present the average and
error bar to present the standard error of the speed and spin within a
training session. With this information, coaches can easily assess the
quality of strokes. They can set a threshold on the bar chart to find
the poorly-performed strokes efficiently. The stroke flow displays the
strokes within a training session (Fig. 6F). Before the training, the flow
is empty. Once the IoT devices are switched on, and trainees start to hit
the ball, the number of glyphs in the flow will increase progressively
(Fig.6F). Due to the limited space of the stroke flow, we cannot display
all strokes within a training session at the same time. Therefore, we
placed a row of points at the bottom of the flow as an overview (Fig.6E).
Each point corresponds to the glyph of a stroke (Fig.6G).

Interaction: We provide two kinds of interactions as follows.

• Creating a new training session: Coaches need to click the
“new training” button at the upper right corner of the training view

Fig. 7. The encoding of the glyph for a stroke and the form of creating a
new training session. A, B, C presents the encoding of stroke speed/spin,
stroke technique, and stroke position, respectively. E is the form coaches
need to fill in before creating a new training session.

to create a blank flow for a new training session (Fig. 6I). Then,
they need to finish a form as Fig. 7D shows. They need to fill the
metadata of the training (i.e., trainee name, training time, and data
path) and bind the sensors with the trainee’s body and the racket.
With the form completed, a new blank flow will be created in the
training view. Then, coaches can click the start button (upper left
in Fig. 6B) to enable the flow to visualize new strokes in real-time.
If a training session is finished, coaches can click the stop button
(middle left in Fig. 6B), and the flow will stop visualizing new
strokes. In addition, coaches can also load the history training for
analysis by clicking the “history training” button (Fig. 6H).

• Assessing strokes: Coaches can drag the slider on the bar chart to
set the threshold for quality assessment. After dragging the slider



to an ideal position, they can click the assessment button (lower
left in Fig. 6B), and the glyphs of the strokes whose speed/spin are
lower than the threshold will be highlighted in the flow (Fig. 6G).
Besides, the corresponding points will also be highlighted in
black. Coaches can easily find poorly-performed strokes.

5.4.3 Suggestion View
The suggestion view contains two sub-views: a suggestion list (Fig. 6J)
and a 3-D view (Fig. 6K). The attributes and indicators of the selected
poorly-performed stroke are presented at the top of the suggestion view
as reference (Fig. 6M). Coaches can click the “Optimization” button
to generate suggestions for the stroke (Fig. 6N). The suggestion list
displays the top eight optimization suggestions oVq = {oV 1

q , ...,oV 8
q }

(Fig. 6J). Each row presents the expected speed and spin of each sug-
gestion oV s

q , which is assessed by Fa. Moreover, the feasibility (Eq. 6)
of each suggestion is also provided. Coaches can choose the suggestion
they want according to these three indicators. Once coaches select a
suggestion, the trajectories reconstructed based on the suggestion will
be displayed in the 3-D view (Fig. 6K).

The 3-D view visualizes the trajectories of all four sensors within
a suggestion. Since each suggestion oV s

q represents the optimized
sensor data of a poorly-performed strokes, we can reconstruct the
trajectories based on oV s

q . We referred to the widely-used basic dead
reckoning [45, 90] for reconstruction. The basic idea of dead reckoning
is to accumulate the displacement happening in each time interval where
the velocity and acceleration are assumed to be constant. Therefore, we
used the acceleration (accx(t),accy(t),accz(t)) data of four sensors in
oV s

q with two assumptions for reconstruction. First, we found the point
t0 (t0 ∈ [0,30)) where the acceleration was the smallest (close to zero)
in the data. We set this point as the beginning of a trajectory because
we assumed that at this point, trainees were holding their ready actions
and all sensors were static (vt0 = 0). Second, we assumed that the
acceleration ai between two sampling points, ti and ti+1, was constant
since there was only 0.05s between ti and ti+1. With these assumptions,
we computed the velocity vti of a sensor at ti as follows,

vti = vt0 +
ti−1

∑
j=t0

a j ∗∆t,(∆t = 0.05s) (7)

where ∆t was the duration between two sampling points. With the
velocity, we can compute the displacement Di between ti and ti+1 with
the acceleration data as follows,

Di =
(vti + vti+1)∗∆t

2
,(∆t = 0.05s) (8)

Finally, we accumulated all displacements of the sensor to reconstruct
its trajectory as follows,

T =
tn

∑
i=t0

Di(tn = 30) (9)

In this way, we reconstructed all four trajectories of a suggestion in
blue in the 3-D view. Besides, we also reconstructed the trajectory of
the poorly-performed stroke in red for comparison. The origins of the
trajectories are placed at the same point. In this way, coaches can rotate
the plot to efficiently compare the trajectories.

6 EVALUATION

This section illustrates two use cases we conducted with a coach and
two trainees, T1 (male, 24) and T2 (male, 21), from the university team.
The coach has served the university team for more than five years. He
has taught considerable players of the university team. Both trainees
are right-handed players who use shakehand rackets with pimple-in
rubber on both sides.

6.1 Case 1: Training of Topspin
T1 wanted to improve his offensive techniques during matches. He
chose topspin for training since topspin is a frequently-used offensive

technique that requires extreme speed and spin. The coach adjusted the
setting of the ball machine to make it serve the ball to the forehand of
T1 with long placement. Then the coach created a new training session,
and T1 started to use topspin to hit the ball (Fig. 5). During this training,
the coach examined the speed and spin of each stroke displayed in the
training view. He commented that this was quite convenient since the
training process were accurately quantified, recorded, and visualized.
He could efficiently and comprehensively analyze T1’s performance.
According to the training flow, the coach found that the speed and spin
of T1’s stroke fluctuated. He observed T1’s motions and guessed that
T1 swung the racket too high, which led to the low speed and low spin
of the ball. With the guess, the coach stopped the training and used the
system for analysis. He moved the slider of speed to 13m/s and found
that most of the strokes are not qualified in speed as Fig. 6E shows.
To validate his guess, he chose a poorly performed stroke (Fig. 6G)
and clicked the “optimization” button. In the suggestion list, the coach
did not choose the one with the highest feasibility since the expected
speed was not qualified. After weighing the pros and cons, he chose the
third one and paid attention to the “racket” plot (Fig. 6L). In the plot,
the blue trajectory was lower than the red, which means the system
suggested that T1 should lower the racket when hitting the ball. This
result validated the coach’s guess. The coach said that this function
provided a proof-of-principle for his guess, which could save much time
for trial and error since they often needed to rely on their knowledge
and experience when giving suggestions.

The coach told T1 about the suggestion and started a second training.
In the beginning, T1 performed well, and the speed and spin met the
coach’s standard. However, after dozens of strokes, the stroke quality
started to drop as Fig. 6D shows. The coach explained that at the
beginning, T1 improved the strokes by lowering the racket. However,
after a while, T1 may feel tired since topspin is a technique consuming
a lot of physical strength, and forget the optimized motion. Therefore,
the stroke quality dropped in the second half of the training. We asked
T1 about the explanation. T1 said that he indeed felt tired in the second
half, and his motion distorted.

6.2 Case 2: Training of Short
T2 wanted to enhance his control technique, short. Short is a frequently-
used control technique after an opponent’s serve. It requires high spin
for effective control. However, compared with the spin of topspin, the
spin of short is much lower, as shown in Table 3. The coach set the
ball machine to make it serve the ball to the backhand of T1 with short
placement. Moreover, the ball was served with a backspin to simulate
the condition of the opponent’s serve. With the help of the training
flow, the coach found that the spins of the strokes were not qualified
(Fig. 8)A. The spins of all strokes were lower than 40r/s. He randomly
chose a poorly-performed stroke (Fig. 8C) for optimization.

The coach checked the suggestion list and chose a suggestion that
could improve the spin to 45r/s. He further explored the four trajecto-
ries of this suggestion. During his exploration, he said that a significant
point of this system was that it could not only validate and refine his ex-
perience and knowledge through data-driven methods, but also provide
new perspectives of training optimization for him, which was much
efficient and reliable than only relying on their imagination and specu-
lation. The optimized trajectory of the right wrist made sense for him
(Fig. 8D). He explained that T2 should move his right wrist diagonally
down to extend the time of friction between the ball and the rubber as
suggested by the blue trajectory (Fig. 8D). The original (red) trajectory
indicated that T2’s right wrist was moving almost horizontally, which
would bounce the ball earlier, leaving little time for friction. The lack
of friction was an important reason for the low spin of the stroke. Then,
the coach told T2 the optimization suggestion, and T2 started a new
training session. This time, T2 moved his right wrist diagonally down
to extend the time of friction. As Fig. 8B shows, the spin of T2’s short
was improved, much higher than the first training.

6.3 Feedback
The coach thought highly of our training system. He thought Tac-
Trainer created a new training mode for him. This mode solves two
limitations of the conventional training mode. First, conventionally,
he needed to assess trainees’ strokes based on his eyes and short-term



Fig. 8. The details of case 2. A is the training flow of T2’s first training session. B is the training flow after T2 received the optimization suggestion. C
is the stroke the coach selected for optimization. D is the optimization suggestion of the stroke for the right wrist.

memory, which was not reliable and scalable enough. He could not
access and remember the exact speed and spin of each stroke and
the detailed motions of trainees, which led to the missing of some
poor performance patterns of trainees. With the system, all technical
attributes and indicators could be quantified, recorded, and visualized
for interactive exploration. The performance patterns of trainees could
be comprehensively and accurately analyzed.

Second, when giving suggestions to trainees, he could only rely
on his experience and knowledge, which did not always work during
the training. Once new training problems occur, he needed to adjust
the suggestion through trial and error. In our system, the generated
suggestions could provide a data-driven proof-of-principle, validating
and refining his suggestions and inspiring new suggestions. Although
considerable other data-driven methods have been introduced to solve
this limitation, these methods were not friendly to him because the
learning curve of the underlying mathematical models was high. He
said that, unlike these methods, Tac-Trainer provided an interactive
visualization interface that got him into the loop of data-driven training.

7 DISCUSSION

In this section, we first discuss the research values and directions of IoT
+ VA from two aspects, VA for IoT and IoT for VA. Then, we discuss
the limitations and future work.

7.1 IoT + VA as a New Research Direction
VA for IoT: Visual analytics can help spread the usage of IoT technology,
especially for users who have no knowledge of processing the sensor
data. Current smart products, such as smartphones and smartwatches,
have provided considerable benefits for users. However, they prevent
the users from accessing the IoT data, which blocks various creative
and interesting ideas raised by the users. For example, as stated by
our experts, although they knew that IoT devices could collect detailed
kinematic features, they did not apply it to practical training since
they had no ideas about how to use the data. In such a condition, a
visual analytics system designed for IoT devices can provide opportu-
nities for users to understand and coordinate the IoT data to conduct
various analysis tasks, facilitate the popularization of IoT technology.
Challenges will lie in designing efficient visual analytics methods for
various types of IoT data. Besides, visual analytics can also facilitate
the development of IoT technology, which is useful for developers. For
example, when designing an IoT system, developers need to consider
many factors (e.g., sensor precision, the data transmission frequency,
etc.), which is a non-trivial task. In such a condition, a visual analytics
system connecting to the IoT system can alleviate the difficulty by
supporting visual debugging. Challenges lie in how to coordinate the
interaction between an IoT system and a visual analytics system.

IoT for VA: With the development of IoT technology, existing IoT
devices have excellent computing power. This feature can help im-
prove the design of visual analytics systems in two aspects. First, the
challenge of data quality and uncertainty [44] can be alleviated. These
challenges are often solved by techniques of data provenance [18] and
data wrangling [42]. IoT provides a new perspective of improving data
quality from the source. For example, anomaly detection algorithms
can be embedded into IoT devices. Once a sensor is abnormal, the

device will send a warning to the visual analytics system and activate
the backup sensor. Challenges will lie in designing algorithms for IoT
devices to efficiently detect and handle data anomalies. Second, the
scalability of visual analytics systems can be further improved. The
powerful computing ability of existing IoT devices enables researchers
to develop distributed visual analytics systems, alleviating the burden
of large data volume and complexity. For example, some complex data
processing components, such as simulation models, pattern recognition
models, etc., can be divided and shared with IoT devices to improve
the computing efficiency of systems. Challenges will lie in designing
structures of distributed visual analytics system.

7.2 Limitations & Future Work
One limitation of our work lies in the generalizability of the data
interpretation models. We tried to train general models. However, the
accuracies were not ideal due to the great differences in kinematic
features between various players. This hinders the efficient extension
of more trainees. Therefore, in the future, we plan to improve the
generalizability of the models. A possible direction is expanding the
pool of trainees in our system. First, we need to identify the different
playing styles of trainees based on their kinematic features. Then, for
each style, we customized a series of robust data interpretation models.
Finally, when a new trainee appears, we only need to classify the trainee
based on the styles and choose the model of this style for him/her.

In addition, we are going to extend Tac-Trainer to other sports,
including racket sports such as tennis and badminton and team sports
such as soccer and basketball. Tac-Trainer can be easily implemented
for other racket sports. For team sports, we need to collaborate with
related experts to identify corresponding requirements, such as the most
important factors, the assessment standard, etc. For example, in soccer,
the devices may be fixed on trainees’ feet. Such changes will inevitably
change the design of some implementation details in Tac-Trainer.

8 CONCLUSION

This work aims to address an important problem of applying IoT tech-
nology to racket sports training. Recognizing visual analytics as the
key component, we fully explore different pathways of coordinating
IoT devices and visual analytics and propose an IoT + VA framework,
Tac-Trainer, based on our practice. Differed from regular visual analyt-
ics frameworks, Tac-Trainer traces back to the data source and provides
guidance for the IoT device configuration, sensor data processing, data
inference, and IoT data visualization. To evaluate the framework, we
implement a proof-of-concept system for table tennis training and con-
duct two case studies on improving trainees’ stroke techniques. From
this work, we identify the mutually reinforcing relation between IoT
and visual analytics, i.e., visual analytics can popularize the application
of IoT while IoT can alleviate issues such as data quality and scalability
for visual analytics. We hope that this work can facilitate training in
the sports domain and inspire future studies of IoT4VA and VA4IoT.
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[13] J. Bernard, N. Wilhelm, B. Krüger, T. May, T. Schreck, and J. Kohlhammer.
Motionexplorer: Exploratory Search in human motion capture data based
on hierarchical aggregation. IEEE transactions on visualization and
computer graphics, 19(12):2257–2266, 2013.

[14] P. Blank, B. H. Groh, and B. M. Eskofier. Ball speed and spin estimation
in table tennis using a racket-mounted inertial sensor. In Proceedings of
ACM International Symposium on Wearable Computers, pp. 2–9, 2017.

[15] P. Blank, S. Hofmann, M. Kulessa, and B. M. Eskofier. MiPod 2: A
New Hardware Platform for Embedded Real-Time Processing in Sports
and Fitness Applications. In Proceedings of ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 881–
884, 2016.

[16] P. Blank, J. Hoßbach, D. Schuldhaus, and B. M. Eskofier. Sensor-based
stroke detection and stroke type classification in table tennis. In Pro-
ceedings of ACM International Symposium on Wearable Computers, pp.
93–100, 2015.

[17] P. Blank, P. Kugler, and B. M. Eskofier. mipod-a wearable sports and
fitness sensor. In Proceedings of Symposium der Sektion Sportinformatik
der Deutschen Vereinigung für Sportwissenschaft, pp. 78–79, 2015.

[18] P. Buneman, S. Khanna, and T. Wang-Chiew. Why and where: A charac-
terization of data provenance. In International conference on database
theory, pp. 316–330. Springer, 2001.

[19] S. Butterworth. On the theory of filter amplifiers. Wireless Engineer,
7(6):536–541, 1930.

[20] A. Cao, X. Xie, J. Lan, H. Lu, X. Hou, J. Wang, H. Zhang, D. Liu, and
Y. Wu. MIG-Viewer: Visual analytics of soccer player migration. Visual
Informatics, 5(3):102–113, 2021.

[21] D. Cervone, A. D’Amour, L. Bornn, and K. Goldsberry. POINTWISE:
Predicting Points and Valuing Decisions in Real Time with NBA Optical
Tracking Data. In Proceedings of MIT Sloan Sports Analytics Conference,
pp. 3–3, 2014.

[22] G. Y.-Y. Chan, L. G. Nonato, A. Chu, P. Raghavan, V. Aluru, and C. T.
Silva. Motion Browser: Visualizing and Understanding Complex Up-
per Limb Movement Unde Obstetrical Brachial Plexus Injuries. IEEE
Transactions on Visualization and Computer Graphics, 26(1):981–990,
2020.

[23] L. Chen, S. Peng, and X. Zhou. Towards efficient and photorealistic 3D
human reconstruction: a brief survey. Visual Informatics, 5(4):11–19,

2021.
[24] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In

Proceedings of International Conference on Knowledge Discovery and
Data Mining, pp. 785–794, 2016.

[25] W. Chen, T. Lao, J. Xia, X. Huang, B. Zhu, W. Hu, and H. Guan. Game-
Flow: Narrative Visualization of NBA Basketball Games. IEEE Transac-
tions on Multimedia, 18(11):2247–2256, 2016.

[26] Z. Chen, S. Ye, X. Chu, H. Xia, H. Zhang, H. Qu, and Y. Wu. Augmenting
Sports Videos with VisCommentator. IEEE Transactions on Visualization
and Computer Graphics, 28(1):824–834, 2021.

[27] F. Cheng, Y. Ming, and H. Qu. DECE: Decision Explorer with Counter-
factual Explanations for Machine Learning Models. IEEE Transactions
on Visualization and Computer Graphics, 27(2):1438–1447, 2020.

[28] X. Chu, X. Xie, S. Ye, H. Lu, H. Xiao, Z. Yuan, Z. Chen, H. Zhang, and
Y. Wu. TIVEE: Visual Exploration and Explanation of Badminton Tactics
in Immersive Visualizations. IEEE Transactions on Visualization and
Computer Graphics, 28(1):118–128, 2021.

[29] M. Du and X. Yuan. A survey of competitive sports data visualization and
visual analysis. Journal of Visualization, (1):47–67, 2020.

[30] A. Franks, A. Miller, L. Bornn, and K. Goldsberry. Counterpoints: Ad-
vanced Defensive Metrics for NBA Basketball. In Proceedings of MIT
Sloan Sports Analytics Conference, 2015.

[31] K. Goldsberry. Courtvision: New Visual and Spatial Analytics for the
NBA. In Proceedings of MIT Sloan Sports Analytics Conference, pp.
12–15, 2012.

[32] Y. Gu, C. Yu, S. Shao, and J. S. Baker. Effects of table tennis multi-ball
training on dynamic posture control. PeerJ, 6:e6262, 2019.

[33] H. Guo, S. Zou, Y. Xu, H. Yang, J. Wang, H. Zhang, and W. Chen.
DanceVis: toward better understanding of online cheer and dance training.
Journal of Visualization, 25(1):159–174, 2022.

[34] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[35] Y. Iino and T. Kojima. Kinetics of the upper limb during table tennis top-
spin forehands in advanced and intermediate players. Sports Biomechanics,
10(4):361–377, 2011.

[36] K. Ishida. IoT application in sports to support skill acquisition and im-
provement. In Proceedings of IEEE Conference on Service-Oriented
Computing and Applications, pp. 184–189, 2019.

[37] Y. Ishikawa and I. Fujishiro. Tidegrapher: Visual Analytics of Tactical
Situations for Rugby Matches. Visual Informatics, 2(1):60–70, 2018.

[38] S. Jang, N. Elmqvist, and K. Ramani. Gestureanalyzer: visual analytics
for pattern analysis of mid-air hand gestures. In Proceedings of ACM
symposium on Spatial user interaction, pp. 30–39, 2014.

[39] S. Jang, N. Elmqvist, and K. Ramani. Motionflow: Visual abstraction and
aggregation of sequential patterns in human motion tracking data. IEEE
transactions on visualization and computer graphics, 22(1):21–30, 2015.

[40] J. M. Jarning, K.-M. Mok, B. H. Hansen, and R. Bahr. Application of a
tri-axial accelerometer to estimate jump frequency in volleyball. Sports
biomechanics, 14(1):95–105, 2015.

[41] A. Jiang, M. A. Nacenta, and J. Ye. VisuaLizations As Intermediate
Representations (VLAIR): An approach for applying deep learning-based
computer vision to non-image-based data. Visual Informatics, 2022.

[42] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. Van Ham, N. H. Riche,
C. Weaver, B. Lee, D. Brodbeck, and P. Buono. Research directions in
data wrangling: Visualizations and transformations for usable and credible
data. Information Visualization, 10(4):271–288, 2011.

[43] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In
Advances in Neural Information Processing Systems 30, pp. 3146–3154.
2017.

[44] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler.
Visual Analytics: Scope and Challenges, pp. 76–90. 2008.

[45] I. Klein and R. Diamant. Dead reckoning for trajectory estimation of
underwater drifters under water currents. Journal of Marine Science and
Engineering, 8(3):205–205, 2020.

[46] K. Klein, S. Jaeger, J. Melzheimer, B. Wachter, H. Hofer, A. Baltabayev,
and F. Schreiber. Visual analytics of sensor movement data for cheetah
behaviour analysis. Journal of Visualization, 24(4):807–825, 2021.

[47] P. R. Krekel, E. R. Valstar, J. De Groot, F. H. Post, R. G. Nelissen, and
C. P. Botha. Visual analysis of multi-joint kinematic data. In Proceedings
of Computer Graphics Forum, vol. 29, pp. 1123–1132, 2010.

[48] S. Kusubori, K. Yoshida, and H. Sekiya. The functions of spin on shot
trajectory in table tennis. In Proceedings of ISBS, 2012.

http://www.gogotak.co.kr/bbs/content.php?co_id=CHOREIKING2
http://www.gogotak.co.kr/bbs/content.php?co_id=CHOREIKING2
http://www.courtmatics.com/
https://www.kickstarter.com/projects/janova/janova-smart-racket
https://www.kickstarter.com/projects/janova/janova-smart-racket
https://www.qlipp.com/de/plus/
http://www.coollang-global.com/welcome/badminton
http://www.coollang-global.com/welcome/badminton
http://www.zepplabs.com/en-us/tennis/
https://www.topendsports.com/world/lists/popular-sport/final.htm
https://www.topendsports.com/world/lists/popular-sport/final.htm


[49] J. Lan, J. Wang, X. Shu, Z. Zhou, H. Zhang, and Y. Wu. RallyComparator:
visual comparison of the multivariate and spatial stroke sequence in table
tennis rally. Journal of Visualization, 25(1):143–158, 2022.

[50] J. Lan, Z. Zhou, J. Wang, H. Zhang, X. Xie, and Y. Wu. SimuExplorer: Vi-
sual Exploration of Game Simulation in Table Tennis. IEEE Transactions
on Visualization and Computer Graphics, pp. 1–1, 2021.

[51] A. Lees. Science and the major racket sports: a review. Journal of sports
sciences, 21(9):707–732, 2003.

[52] I. Li, A. K. Dey, and J. Forlizzi. Using Context to Reveal Factors that
Affect Physical Activity. ACM Transactions on Computer-Human Interac-
tion, 19(1):1–21, 2012.

[53] R. Liu, Z. Wang, X. Shi, H. Zhao, S. Qiu, J. Li, and N. Yang. Table
tennis stroke recognition based on body sensor network. In Proceedings of
International Conference on Internet and Distributed Computing Systems,
pp. 1–10, 2019.

[54] A. G. Losada, R. Therón, and A. Benito. BKViz: A Basketball Visual
Analysis Tool. IEEE Computer Graphics and Applications, 36(6):58–68,
2016.

[55] S. Lu, X. Zhang, J. Wang, Y. Wang, M. Fan, and Y. Zhou. An IoT-
Based Motion Tracking System for Next-Generation Foot-Related Sports
Training and Talent Selection. Journal of Healthcare Engineering, 2021,
2021.

[56] R. Ma, D. Yan, H. Peng, T. Yang, X. Sha, Y. Zhao, and L. Liu. Basketball
movements recognition using a wrist wearable inertial measurement unit.
In Proceedings of IEEE International Conference on Micro/Nano Sensors
for AI, Healthcare, and Robotics, pp. 73–76, 2018.

[57] H. Mansoor, W. Gerych, A. Alajaji, L. Buquicchio, K. Chandrasekaran,
E. Agu, and E. Rundensteiner. ARGUS: Interactive visual analysis of
disruptions in smartphone-detected Bio-Behavioral Rhythms. Visual In-
formatics, 5(3):39–53, 2021.

[58] T. Mitsui, S. Tang, and S. Obana. Support system for improving golf
swing by using wearable sensors. In Proceedings of Eighth International
Conference on Mobile Computing and Ubiquitous Networking, pp. 100–
101, 2015.

[59] H. Oagaz, B. Schoun, and M.-H. Choi. Performance Improvement and
Skill Transfer in Table Tennis Through Training in Virtual Reality. IEEE
Transactions on Visualization and Computer Graphics, pp. 1–1, 2021.

[60] J. P. Ono, C. A. Dietrich, and C. T. Silva. Baseball Timeline: Summarizing
Baseball Plays Into a Static Visualization. Computer Graphics Forum,
37(3):491–501, 2018.

[61] M. L. Parry, P. A. Legg, D. H. S. Chung, I. W. Griffiths, and M. Chen.
Hierarchical Event Selection for Video Storyboards with a Case Study on
Snooker Video Visualization. IEEE Transactions on Visualization and
Computer Graphics, 17(12):1747–1756, 2011.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn:
Machine learning in Python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

[63] C. Perin, J. Boy, and F. Vernier. Using Gap Charts to Visualize the
Temporal Evolution of Ranks and Scores. IEEE Computer Graphics and
Applications, 36(5):38–49, 2016.

[64] C. Perin, R. Vuillemot, and J.-D. Fekete. SoccerStories: A Kick-off for
Visual Soccer Analysis. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2506–2515, 2013.

[65] C. Perin, R. Vuillemot, and J.-D. Fekete. A table!: improving temporal
navigation in soccer ranking tables. In Proceedings of CHI Conference on
Human Factors in Computing Systems, pp. 887–896, 2014.

[66] C. Perin, R. Vuillemot, C. D. Stolper, J. T. Stasko, J. Wood, and S. Carpen-
dale. State of the Art of Sports Data Visualization. Computer Graphics
Forum, 37(3):663–686, 2018.

[67] H. Pileggi, C. D. Stolper, J. M. Boyle, and J. T. Stasko. SnapShot: Visual-
ization to Propel Ice Hockey Analytics. IEEE Transactions on Visualiza-
tion and Computer Graphics, 18(12):2819–2828, 2012.
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