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SimuExplorer: Visual Exploration of Game
Simulation in Table Tennis

Ji Lan, Zheng Zhou, Jiachen Wang, Hui Zhang, Xiao Xie, and Yingcai Wu

Abstract—We propose SimuExplorer, a visualization system to help analysts explore how player behaviors impact scoring rates in
table tennis. Such analysis is indispensable for analysts and coaches, who aim to formulate training plans that can help players
improve. However, it is challenging to identify the impacts of individual behaviors, as well as to understand how these impacts are
generated and accumulated gradually over the course of a game. To address these challenges, we worked closely with experts who
work for a top national table tennis team to design SimuExplorer. The SimuExplorer system integrates a Markov chain model to
simulate individual and cumulative impacts of particular behaviors. It then provides flow and matrix views to help users visualize and
interpret these impacts. We demonstrate the usefulness of the system with case studies and expert interviews. The experts think highly
of the system and have obtained insights into players’ behaviors using it.

Index Terms—Sports Visualization, Game Simulation, Model Interpretation, etc.

1 INTRODUCTION

able tennis is an extremely interactive sport, in which
what each player does is highly affected by the actions
of his or her opponent [1]. In table tennis, players use pad-
dles to hit a ball back and forth, using various strokes that
may differ in technique, ball position, and other technical
attributes. Each stroke is heavily influenced by the stroke
that came before. Table tennis analysts pay close attention to
how players interact through strokes, and try to determine
how these interactions affect each player’s ability to score,
in order to help coaches formulate training plans.
Fine-grained data describing how table tennis players
interact during matches is increasingly available, leading
data scientists to propose a set of statistical methods and
mathematical models [1], [2], [3], [4], [5], [6] to help ana-
lysts better understand player behaviors. In this domain, a
“stroke state” is defined as a set of technical attributes that
combine to make up a single stroke, and a “behavior” (also
known as a “return”) is how a player responds to his or her
opponent’s immediately preceding stroke. In one particu-
larly popular model, the finite Markov chain model [5], [6],
a table tennis rally is viewed as a sequence of possible stroke
states, where the probability of a particular stroke state
depends only on the stroke state that immediately preceded
it. The model enables analysts to simulate changing the
behavior of a player’s opponent — in other words, how
the opponent responds to a player’s strokes — and explore
how this impacts the player’s ability to score [5], [6], [7].
However, previous studies using this model fail to ex-
plain how particular behavior adjustments actually impact
scoring rates. Two studies present the impacts of different
behavior adjustments simulated by the Markov chain model
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through static charts [5], [6]. An additional tool, Tac-Simur
[7], employs a visualization system that enables users to
explore the impacts of different behavior adjustments in-
teractively. Although the explainability of the Markov chain
means that the causal mechanisms that lead from behaviors
to scoring rates are technically traceable, these studies do
not emphasize or visualize them. This is a missed opportu-
nity, as knowledge of these causal mechanisms allows table
tennis analysts to understand when and how the behaviors
of a player affect his or her scoring rate.

In this study, we present a visualization system that
explicitly shows how players’ stroke behaviors impact scor-
ing rates in a table tennis simulation. Our major challenge
was determining how to identify and visualize the ways
in which behavioral adjustments impacted the score, both
immediately and cumulatively. We were faced with three
particular problems: (1) Previous studies focus on coarsely
defined behaviors consisting of only one attribute per stroke
[5], [6]. Table tennis analysts require a more in-depth anal-
ysis that takes both stroke technique and ball position into
account over the course of two strokes. Identifying impor-
tant combinations of these two attributes over two strokes
in order to classify them into behaviors requires domain
knowledge, time and effort. (2) Visualizing the impacts of
a particular behavioral adjustment involves showing how
many different entities relate to many other different en-
tities (hereafter referred to as “many-to-many relations”).
A behavior consists of two strokes — the stroke received
by the player, and the stroke they make in return — and
each stroke has many possible attribute values. Adjusting
a behavior involves changing transfer probabilities from
many attribute values of the received stroke to those of the
responding stroke. A player’s behavior will also influence
their opponent’s behavior, which further affects the scoring
rate. A useful tool must effectively present these multi-step
impacts and the connections between them. (3) Full table
tennis rallies are made up of multiple behaviors, some of
which are repeated. A useful tool must visualize not only
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Table 1. Key Terminology.

Term Definition

Stroke When a player hits the ball once with the table tennis racket.

Rally A sequence of alternating strokes hit by two players.

Stroke Attribute A technical element of a stroke. The two most important stroke attributes are stroke technique and ball

position.
Stroke State
Behavior/Return
Return State
Tactic

The combined values of a stroke’s attributes, in this case stroke technique and ball position.

A player’s response to his or her opponent’s stroke, combined with the stroke the player is responding to.
The combined values of all stroke attributes involved in the two strokes that comprise a return.

A tactic used by a player denotes three consecutive strokes, of which the first and third strokes are given by

that player and the second stroke is given by the opposing player.

First Return in Tactic
Second Return in Tactic
Return Adjustment
Tactic Result

The first two strokes within a tactic comprise the first return of that tactic.

The second (and final) two strokes within a tactic comprise the second return of that tactic.
When one player forces the other to return a specific stroke in the first return of a tactic.
Whether a player’s tactic succeeds and allows them to score.

the immediate impacts of a behavior, but how these impacts
accumulate over the course of a rally.

We worked closely with experts in table tennis to ad-
dress these challenges. We identified typical behaviors. In
table tennis, two overlapping behaviors (three strokes total)
make up a common unit of analysis called a “tactic.” We
considered a rally to be a sequence of one player’s tactics,
and measured the impacts of that player’s behavior at each
tactic.

Based on these conceptual underpinnings, we modified
the Markov chain model used in previous studies [5], [6]
to model new behaviors. Finally, we developed a visual
analytics system that provides a multi-level presentation of
how different players” behavior adjustments impact their
scoring rates. The system comprises four views: the player
view, the adjustment view, the accumulation view, and the
impact view. The player view provides an impact distribu-
tion over behaviors for different players. The adjustment
view presents impacts of adjustments to various behaviors
for an individual player. The accumulation view adopts flow
charts to present the impact accumulation at each tactic. The
impact view uses a pair of matrices to reveal the generation
patterns of impacts.

The contributions of this work are as follows:

o Characterization of domain problems in interpreting
impacts of behavior adjustments in table tennis.

e A visualization system that supports multi-level ex-
ploration of the impacts of behavior adjustments on
scoring rates in table tennis.

e Case studies that illustrate the augmented capacity
of analyzing the impacts of behavior adjustments.

2 BACKGROUND

This section presents the domain knowledge necessary to
understand the paper, along with the analysis tasks in-
volved.

2.1 Domain Knowledge

Here we define key table tennis terminology used in this
paper. More concise definitions of these terms are presented
in Table 1.

Stroke and rally. A stroke occurs when a player hits
the ball once with the table tennis racket. A rally is a
sequence of strokes made by alternating players. When
reading a particular rally’s stroke sequence, strokes with
odd sequential numbers were made by Player A and strokes
with even sequential numbers were made by Player B. A full
table tennis match comprises nearly a hundred rallies.

Stroke attribute. A single stroke has many technical
attributes. According to table tennis analysts, the two most
important attributes are stroke technique (how the player
hits the ball) and ball position (where the ball impacts the
table after being struck). In this study, we use these two
attributes to describe each stroke.

Stroke state. The combined values of a stroke’s two
attributes — in this case, stroke technique and ball position.
For instance, (topspin, long forehand) is a stroke state in
which the stroke technique is topspin and the ball position is
long forehand.

Behavior/Return. With the exception of the initial serve,
each stroke made in a table tennis rally follows a previous
stroke made by an opponent. A player observes their oppo-
nent’s stroke and considers how to respond to it with their
own stroke. To table tennis experts, this set of two strokes
— the prior stroke and the response — is called a “return.”
In this paper, because it is the unit of analysis our system
works with, we also refer to it as a “behavior.” In table
tennis analysis, a return also contains information about
the prior stroke. A return by Player B is formally denoted
(stroke; pi1, stroke; 11 p2).

Tactic. Table tennis players think several steps ahead,
using their own returns to try to force particular returns
from their opponents in order to set themselves up for
a specific return of their own. In table tennis analysis, a
“tactic” consists of three total strokes — two by the player
at hand and the middle one by their opponent. Formally,
(stroke; p1, stroke; 11 p2, stroke;12 1) is a tactic by Player
A. The first two strokes of a tactic comprise that tactic’s
“first return” (stroke; pi1, stroke;i1 p2). The second (and
last) two strokes in a tactic comprise its “second return”
(stroke;q1,p2, stroke;1o p1).

Return adjustment. Within a tactic, Player A forces
Player B to return a specific “setup” stroke in the first return
so that they can return a planned stroke in the second return
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and increase their chances of scoring. We call this a “return
adjustment.”

Tactic result. A tactic by Player A has two possible
results: Player A either does or does not score on the third
stroke. Analysts aim to investigate how adjustments to the
first return of a tactic affect the result of the tactic overall.

2.2 Analysis Tasks

We collaborated with two experts (hereafter referred to as
“expert A” and “expert B”) for six months to develop Simu-
Explorer. Expert A is an authority on technique and tactic
analysis of table tennis players. Expert B is a postdoctoral
researcher majoring in sports science, as well as a table
tennis athlete and experienced analyst. Both experts work
for a top national table tennis team.

The experts hope to analyze table tennis data and in-
terpret the results. To identify problems with their exist-
ing practices and opportunities for improvement, we con-
ducted informal interviews, used their analysis software,
and observed them at work. The experts used a Markov
chain model to analyze data, often using software to ad-
just players’ strokes in the model and examine how this
impacted scoring rates. We noted that this process was
often tedious, and might involve changing the behavior of
every single player in order to determine how to positively
impact the scoring rate (T1), or changing every single return
of a player to find out which tweaks were effective (T2).
Moreover, experts often found it difficult to interpret why
changing a particular stroke attribute affected the scoring
rate, as the software they used outputted results without
providing explanations. They hoped that we could provide
a visualization tool that would help them understand the
relationship between a behavior change and its impacts (T3-
4). We worked closely with the experts to develop such a
tool. The main stages of our collaboration are as follows.

Applying a prototype system (two months). Experts
were unfamiliar with the intermediate results of the Markov
chain model, which help explain how player behaviors
translate into scores. We developed a prototype system to
help them explore the distribution of these intermediate
results, using a Sankey diagram to present how stroke states
lead to other stroke states.

They quickly understood the possibilities, pointing out
that we could break up a rally into a sequence of tactics
and examine how impacts of a successful return adjustment
accumulate at each tactic (T3).

We further characterized the process through which an
adjustment affects the scoring rate within a tactic. According
to experts, an adjustment in the first return of a tactic
increases the chance that an opponent uses a specific kind
of stroke, and decreases the chance that the opponent uses
other kinds of strokes. This adjustment then changes the
probabilities of different kinds of strokes in the second
return, and these changed probabilities change the scoring
rates by the third stroke of the tactic. Overall, tracing the
route from an adjustment to its impact involves tracking
the adjusted many-to-many state probabilities in the first
return, the affected many-to-many state probabilities in the
second return, and the changed final scoring rate after the
third stroke. The chance of scoring at a particular tactic can
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also be influenced by return adjustments in previous tactics.
The experts need the visualization system to support visual
exploration of how changed state probabilities coalesce into
an impact on the chance of scoring at a tactic, and how the
impact is indirectly influenced by previous tactics (T4).

We found that the prototype system had too much visual
clutter, as the Sankey diagram cannot present relations
among too many groups, and showed all the information
instead of just necessary information.

Characterization of domain problems (one month).
We discussed the Markov chain model with experts, and
decided which intermediate model results were the most
important. In this process, we referred to previous studies
[5], [6] that have used the Markov chain model to simulate
the impacts of adjusting players’ behaviors.

Iteration of system design (two months). We iterated
and refined our design based on multiple discussions with
our expert collaborators, focusing on clarifying the informa-
tion pipeline and revising and synthesizing analysis tasks.

Development of the system (one month). After the
experts confirmed the final set of analysis tasks, we began
developing the alpha version of the system. We then invited
the experts to use the system and revised it into a beta
version according to their feedback on functionality and
usability. We continued polishing this version of the system.

After these iterative discussions and revisions, the ex-
perts settled on the following analysis tasks:

T1 What are the impacts brought by return adjustments
of different players? Players have individual styles
of playing, and the impacts of returns differ by
player. The experts hope to browse different players’
impact distributions over return adjustments.

T2 What are the impacts brought by different return
adjustments of a player? Adjustments to different
returns exert varying impacts for a player. The ex-
perts need to detect the impact patterns of different
return adjustments.

T3 How do the impacts brought by a return adjust-
ment accumulate over tactics in a rally? A rally
in table tennis contains a sequence of tactics. The
experts hope to explore how the impacts of a return
adjustment in sequential tactics accumulate in a rally.

T4 How does a return adjustment influence the scoring
chances at a tactic? The experts hope to examine
how the impacts are generated in a tactic and how
many impacts in a tactic are due to previous tactics.

3 RELATED WORK

This section presents analytical methods used with table
tennis data, visualizations used with sports data, and vi-
sualization techniques for displaying event sequences and
state transitions.

3.1 Analytical Methods for Table Tennis

A common approach to evaluating table tennis players’
performances is to describe statistics associated with perfor-
mance indicators. Existing studies analyze shot characteris-
tics [2], game structure indicators [3], and skill evaluation
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indicators [4]. These studies investigate the statistics drawn
from game observations. However, such statistics ignore
dynamic interactions between players and do not allow
for systematic analysis [1]. The Markov chain model can
be used to simulate full table tennis rallies and to identify
behaviors that strongly impact a player’s scoring rate. This
model considers the context linking individual observa-
tions. On this basis, Pfeiffer et al. [5] developed four different
state-transition models to describe the impacts of behaviors
on a table tennis match. Wenninger et al. [6] used a similar
model to reveal the scoring rate factors. Tac-Simur [7], which
is also based on the Markov chain model, proposes the first
visualization system that allows for interactive adjustment
and impact examination. However, this tool does not help
table tennis experts understand how adjustments impact the
score, or how they build on each other.

This work goes beyond these previous studies by intro-
ducing a method for exploring how the estimated impacts
of behavior adjustments on the score occur and accumulate
over the course of a rally, through a modified Markov chain
model and a set of coordinated visualizations.

3.2 Sports Visualization

A number of previous studies have tackled the problem
of sports visualization. We classify these into three groups
based on each study’s design goals.

Seeking spatial and temporal patterns. Most sports vi-
sualization methods aim to detect spatial patterns in sports
data. Counterpoints [8] and GameFlow [9] visually repre-
sent spatial patterns of basketball players’ statistics. Base-
ball4D [10] and SnapShot [11] present the spatial patterns of
balls and players in baseball and shot lengths in ice hockey,
respectively. StatCast Dashboard [12] explores the spatial
distributions of various kinds of data in baseball. PassVizor
[13] presents the spatial patterns of passing behaviors in
soccer. Previous studies have also explored trajectories in
sports in order to obtain the attack patterns of teams [14],
detect anomalous events [15], and examine the movements
of balls [16], [17], [18]. Temporal patterns in sports data
are also worth exploring. BKViz [19] reveals the patterns
of temporal observations, such as the play types and point
outcomes, of a basketball team in a match and throughout
a season, respectively. TenniVis [20], CourtTime [21] and
iTTVis [22] present the temporal patterns of varying scores
and rally lengths in tennis and table tennis, respectively.
ForVizor [23] visualizes spatiotemporal patterns of forma-
tions in soccer, and TideGrapher [24] visualizes the similar
patterns for rugby football. These studies have utilized high-
bandwidth visual channels to deliver valuable information
to sports experts.

Revealing patterns of relations and structures. Visu-
alizations that reveal relationships within sports data have
also been proposed. Several studies have investigated pat-
terns in team rankings — including A Table [25], which
reveals the evolving rankings of soccer teams — while
many studies also explore the tree structure of matches or
tournaments. Tan et al. [26] visualized the tree structure of a
tournament to provide an understandable representation of
the process and allow nonlinear predictions. TennisViewer
[27] provides clear tree structures of tennis match data. Two
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studies aim to display many-to-many relations within sports
data. SoccerStories [14] and iTTVis [22] use matrix views
to visualize passing rates among players in a soccer match
and the correlations among attribute values over strokes in
table tennis, respectively. These studies help users clarify
and analyze the complex relationships within and between
sports datasets.

Glyph-based and annotation-aided analysis. Many
sports visualization tools seek to provide intuitive analysis
through the use of representative glyphs, or by directly
annotating video. MatchPad [28], iTTVis [22], Tac-Simur
[7], Tac-Miner [29], and RallyComparator [30] each uses a
set of glyphs that imitate the actions of players, to help
domain analysts grasp the events in a rugby game or un-
derstand table tennis stroke attributes at a glance. Similarly,
TacticFlow [31] represents tactic variation patterns through
tailored glyphs, as does TenniVis [20] for game elements
such as scoring and serve information. Data videos [32] and
visualization-augmented videos [33] are widely employed
to communicate insights engagingly. Studies have been pro-
posed to integrate visualizations into original sports videos.
Parry et al. [34] introduced a video storyboard that can
be used to visually depict and annotate events in snooker
videos. VisCommentator [35] proposes a design space and
a prototyping tool for augmenting sport videos with visual-
izations. Director’s Cut [36] and Bring it to the Pitch [37] use
computer vision techniques to extract trajectory data from
soccer match videos and add visualizations that represent
important statistics, such as distance and area. These studies
integrate real, often visible elements of sports into the data
analysis process, making it more intuitive.

A recent survey [38] alternately classified sports data
visualization efforts into feature presentation, comparison,
and prediction tasks. Our work is unique in that it aims
to use interactive visualizations to explain impacts within
a simulation model, an area not investigated by previous
sports visualization studies.

3.3 Visualizing Many-to-Many Relations

Studies aiming to visualize many-to-many relations mainly
focus on the visual analysis of state-transition graphs,
geographically-embedded flows, and event sequences. We
present relevant studies in these areas.

Most previous studies focus on visualizing state tran-
sitions among many-state values have used node-link di-
agrams to present transition relations. For instance, Pivot-
Graph [39] places different types of nodes in a grid and
uses links among the nodes to represent relations. However,
node-link diagrams are not easily scalable. Pretorius and
Van Wijk [40], [41] employed dense visualization views to
present overall trends within thousands of transition rela-
tions, while Van Ham et al. [42] clustered a large diagram
to reduce the information. However, examining a specific
relation within a dense or aggregation view is impossible.
For this study, where table tennis experts need to examine a
specific relation among the many relations, these visualiza-
tion techniques cannot be applied.

The visualization of geographically-embedded flows
aims to show movements between and among many ge-
ographic locations. Previous studies have employed flow
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maps [43] to represent many-to-many relations among lo-
cations. A flow map places locations in a map according to
their geographical coordinates, and connects these locations
with links whose width encodes the traffic volume. The
flow map is intuitive but also has limited scalability. An
origin-destination (OD) matrix [44] may also be proposed to
visualize directed movements from many origins to many
destinations. The matrix view possesses high information
density and clutter-free features, and is more scalable than a
flow map for visualizing many-to-many relations. Because
an OD matrix does not contain geographical information,
an OD map [45] has been proposed that includes this, while
another study [46] proposed the use of leader lines to link an
OD matrix and its corresponding map. These visualization
techniques are closely tied to geographical locations, and
do not consider the temporal component of many-to-many
relations. The data in our study do not contain geographical
information, and we must include temporal analysis of
these many-to-many relations, so these strategies are not
appropriate for our task.

Visualizing multiple event sequences involves showing
the transition relations among many event types in time.
Moreover, the relations within event sequences have a tem-
poral order. Many studies employ flow charts [47], [48]
to visualize sequential many-to-many relations. Although
flow charts are intuitive, they can also run into scalability
problems. In our study, there are more than two hundred
possible relations among twenty attributes. A flow chart
used to visualize relationships on this scale will be visu-
ally cluttered. MatrixWave [49] and iTTVis [22] employ a
matrix flow to visualize sequential many-to-many relations
[22], [49]. The matrix view is more scalable for presenting
relationships, and its tailored layout allows for the display
of relations within different time steps. But the layouts of
the sequential matrices in MatrixWave [49] and iTTVis [22]
change the direction of a matrix flow, which can hinder
understanding of how impacts build on each other during
a rally. Moreover, these two layouts do not save space for
displaying two matrices in a rectangular view. In this study,
we employ matrix views to visualize the multi-step, many-
to-many relationships between player behavior attributes
and scoring impacts, and propose a new layout to better
present the sequential impacts.

4 DESIGN AND DEVELOPMENT OF SIMUEX-
PLORER

SimuExplorer is a web application with three components:
one each for data preprocessing, data analysis, and visu-
alization. The data preprocessing component extracts typ-
ical returns of players (Fig. 1A) from the CSV data tables
that record matches. The data analysis component builds
a modified Markov chain model (discussed in Section 4.2)
for each player (Fig. 1B). For each return adjustment of each
player, the model estimates the overall impact on the scoring
rate (Fig. 1B). The model also outputs intermediate results
that explain the generation process of impacts (Fig. 1B).
The visualization component (Fig. 1C) uses Vue.js to inter-
actively visualize the multi-level impacts and intermediate
results received from the model. We provide a demo of
SimuExplorer on https://simuexplorer.github.io/.

Original match data o
~—

ReturnsI of players L

E I_j Build a Markov chain
Player1, -- model for each player
(_/H
Return 1, -

Model

| |
Adjustment %

Intermediate results

Impact

,

Player View Adjustment View Accumulation View Impact View

Fig. 1. System Overview. (A) Data processing component. (B) Data
analysis component. For each player, this component builds a Markov
chain model. The impact of each return adjustment of the player is
estimated by the model. (C) Visualization component. This component
visualizes the multi-level impacts output by the model.

4.1 Data

We collected data from 306 table tennis matches among 21
top players (10 males and 11 females) from 2005 to 2012.
The data was collected by manually coding videos. We
have tried using machine learning models to automatically
extract structured data from video. However, low video
quality means that the accuracy of automatically extracted
stroke features, such as stroke technique, is relatively low
(around 75%). Each match was collected as a CSV file, which
contained hundreds of rows representing the hundreds of
strokes in the match. Each row records different features of
a stroke as follows.

o Rally ID denotes the rally the stroke belongs to.

o Stroke ID is the sequence number of the stroke in
the rally.

e Stroke player denotes the player who gave the
stroke.

e Stroke technique denotes the technique the player
uses to give the stroke. There are 14 techniques.

o Ball position denotes the drop point of the stroke.
There are ten drop points.

4.2 Simulative Model

Lames [6] first proposed simulating a table tennis rally
through a Markov chain model. The model views a rally as a
sequence of possible stroke states, and simulates the impacts
of strokes on players’ scoring rates. Here we go through how
Lames’ model [6] has been applied in previous studies and
explain how the model simulates a rally. Then we propose a
modified model and explain how intermediate results of the
model measure returns and impacts of return adjustments.

4.2.1 Lames’ Model

Previous studies [5], [6] use a stroke attribute, such as stroke
technique, as the transition state of the Markov chain. In
this manner, a rally in table tennis is regarded as a sequence
of possible stroke attribute values on stroke;, strokes, ...
stroke,,. Formally, the states are valuei p1, value; po, ...,
valuey p1, valuey, po , scorep, and scoreys. These states
are all attribute values of the selected stroke attribute (e.g.,
stroke technique) of two players (P1 and P2). score,; and
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Fig. 2. (A) We array 243 two-stroke returns as gray entries in a matrix. The column headers of the matrix are value combinations of stroke technique
and ball position at the first stroke of the return, and row headers are those at the second stroke. (A-1) is a highlighted return. (A-2) gives an example
of adjusting the return. (B) lllustration of the Markov chain model, where M is the transition matrix and V and Vv are the state probability vectors.

scorepy indicate that the player has scored at that stroke.
These two states are the absorbing states and will not
transform into other states.

As shown in Fig. 2B, M is the empirical transition matrix
and Vy is the empirical initial probability vector. The row
and column headers of the matrix are the states, and each
matrix entry presents the transition probability from the row
header to the column header. Each element in vector V
presents the initial probability of the corresponding state.
The transition matrix and initial probability vector are es-
timated from the analyzed matches. We calculate the ratio
between the number of times that state A transforms into
state B and the number of times that state A transforms
into all states in collected matches, and use this ratio as
the probability in the matrix entry with row header A and
column header B. We calculate the ratio between the number
of times that state A appears in a rally’s first stroke and the
number of times that all states appear in the first stroke.
We use this ratio as the probability in the initial probability
vector V. During computation, the initial probability vector
is repeatedly multiplied by the transition matrix until the
probabilities of all states except absorbing states approach
zero (to five decimal points). The probabilities of scorep:
and scorepy in the absorbing vector Vi are regarded as
the scoring rates of the two players. The transition matrix
M measures player returns. Adjusting a player’s returns
is achieved by tuning the empirical transition matrix M.
Changes in final scoring rates then quantify the impacts.
The specifics of these adjustments will be introduced in the
next section.

However, a player’s stroke is complex, and many key
stroke features involve combinations of two attributes,
which previous studies cannot model. Moreover, a player’s
return is also dependent on the opponent’s prior return
within a tactic. Merely modeling transitions among strokes
loses helpful information about tactical correlations between
returns, thus inadequately quantifying the impacts of return
adjustments.

4.2.2 Modified Model

We modified the model to consider two attributes and two
strokes as a single state in order to preserve the complex
stroke features and tactical correlations among returns.

Measuring return. In collaboration with the experts, we
decided to use the stroke technique and ball position to
describe each stroke, and to use two consecutive strokes
(one return) as a single “return state.” After discussions and
explorations of the collected data, we selected 243 typical
returns (Fig. 2A).

We used player returns as transition states in order to
preserve tactical correlations between returns. In this man-
ner, a rally is regarded as a sequence of possible return states
on stroke o, strokes s, ... strokey_1 . The transition matrix
M and state probability vector V are estimated similar to
Lames” model.

Making adjustments. We break down a rally
into the tactics of the player who gives the first
stroke, i.e., strokei_s, strokes_s, strokesg1—2k+3-
Each tactic is further divided into two returns, ie.,
(strokej_q, strokes_3), (strokes_q, strokey_y),
(strokesgy1—ok+2, Strokesgio_og+3). As introduced in
Section 2.1, a player will adjust the return of her/his
opponent during the first return of the tactic in order to
obtain a higher chance of scoring after the third stroke.
We hence allow adjustment of the first return in a tactic
(e.g., the strokej_o of the tactic stroke;_s) in the model
and explore how this impacts the second return (e.g., the
strokea_s of the tactic stroke;_3), and finally the scoring
rate after the third stroke.

As shown in Fig. 3B, adjustments AV and AV; are
applied to the probability vectors at returns comprising
Strokes 1-2 and Strokes 34, respectively. The probability
vectors at returns comprising Strokes 2-3 and Strokes 4-5
receive a boost of AVoM and AVoM? + AVaM (Fig. 3A),
respectively. The scoring rates at Strokes 3 and 5 are subse-
quently influenced (Fig. 3C). In this manner, we can deter-
mine overall how the return adjustments of player A during
the first returns of her or his tactics change the probabilities
of return states at the second returns, and finally change
her or his chance of scoring by the end of the tactics. In
particular, for the variations in probability vectors at the
return comprising Strokes 4-5, AV, M is caused by the
return adjustment at the return comprising Strokes 3—4, and
AVyM?3 is caused by adjustments at previous tactics. Our
visualization system distinguish these two impacts.
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Fig. 3. lllustration of the adjustments and impacts during the computation process of the modified model. Items in red are caused by adjustments
at the current tactic, and items in blue are caused by adjustments at previous tactics. (A) presents the changed state probability vector at each step
in the Markov chain process. (B) presents the adjustment made at each tactic. (C) presents the changed scoring rate at each step in the Markov
chain process. (D) and (E) present the distributions of impacts over return adjustments of three female and three male players for the case study

discussed in Section 5.1.1.

We calculated the magnitude and compensation of ad-
justments similarly to previous studies [5]. For instance,
assume the experts want to see what happens if player
A forces the opponent to use (drop, half middlehand)
stroke state more frequently after he or she uses
(drop, shortbackhand) stroke state (Fig. 2A-1). We firstly
increase the probability of this stroke state and reduce
probabilities of other stroke states in the same column
proportionately, to guarantee that the total probability of the
column is constant (Fig. 2A-2). According to Pfeiffer et al.
[5], the function for deflection is as follows (All probabilities
in the column are normalized through division by the total
probability of the column):

0P, =C+ Bx4% P, x(1—P,)

where P, is the normalized probability of the state; J P, is
the change of the probability; C'is a constant that describes
the deflection in the border probabilities; B is a constant that
describes the maximum value of the relative magnitude of
deflection; and 4 is a normalization factor that allows the
constant B to be equal to the maximum value of deflection.
In this work, the constant C = 0.05 and B = 0.25, determined
on the basis of the previous work [5] and discussions with
the experts. According to Pfeiffer et al. [5], the compensation
function is

(SPyZ:—(Pyl/(l—Pw))*(SPJ;

where P,; is the normalized probability of other states in
the column and ¢ Py; is the change in probability. Fig. 2A-2
shows an example for the adjustments.

4.3 Visualization Design

We propose a visualization system to realize the analysis
tasks proposed in Section 2.2. The system consists of four
views: the player view, the adjustment view, the accumu-
lation view, and the impact view. The workflow and cross-
view interactions are as follows.

e Click a player in the player view, and examine correspond-
ing impacts in the adjustment view. Bar charts in the
player view represent the impact distribution over
different returns for a chosen player (Fig. 4A, T1).
When a user is interested in the impact distribution
of a particular player, she/he can click and select

the player in the player view. The adjustment view
will then display the impacts of adjusting different
returns for the player (Fig. 4B, T2).

o Click an impact in the adjustment view and examine
its accumulation in the accumulation view. The user
can further select the impact of an interesting return
adjustment by clicking it in the adjustment view. The
accumulation view provides visual tracking of the
accumulation of impacts over tactics (Fig. 4C, T3).

o Click a tactic in the accumulation view and examine how
the impact is generated at this tactic in the impact view.
When the user clicks a tactic in the accumulation
view, the impact view presents the generation pro-
cess of the impact at that tactic (Fig. 4D, T4).

The four views provide a multi-level presentation of the
impacts caused by adjusting players’ returns. Green and
purple represent the two players, and orange and blue
represent the increase and decrease in the scoring rate and
probability over the whole system.

4.3.1 Player View

The player view (Fig. 4A) provides a browsable overview of
the impacts of return adjustments for different players (T1).

This view contains a table that lists all the top table
tennis players. A bar chart (Fig. 4A-4) in each row in the
table presents the impact distribution of return adjustments
for a player. Because stroke technique is the most impor-
tant attribute, in the left column, we group typical returns
according to six stroke technique values based on the first
stroke in the return, obtaining six groups. In the right
column, we group typical returns according to five stroke
technique values based on the second stroke in the return,
obtaining five groups. We encode the average impact of
adjusting returns in each group as a bar in the bar chart.
The orange bars denote return adjustments with positive
impacts, while the blue bars denote return adjustments
with negative impacts. The axes are scaled according to
the largest impact. With this view, users can quickly detect
whether a player can change their scoring rate by adjusting a
group of returns involving specific stroke technique values.
Two switch buttons (Fig. 4A-1 and 4A-2) allow switching
between serve and other rallies and between male and
female players.
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Fig. 4. System Interface. The interface comprises four well-coordinated views: the player view (A), the adjustment view (B), the accumulation view
(C), and the impact view (D) (including a pair of coordinated matrices (D-2) and (D-4)).

4.3.2 Adjustment View

After a user selects a player for analysis, the adjustment
view (Fig. 4B) provides an overview of the impacts of
adjusting the player’s different returns (T2).

This view contains a matrix similar to that in Fig. 2A.
Each entry in the matrix (Fig. 4B-1) represents one return
of Player A. The column headers denote the combinations
of stroke technique and ball position values at the first
stroke of the return (given by Player A), and row headers
denote those at the second stroke (given by opponents of
Player A). The area of the rectangle in an entry encodes the
impact of adjusting the corresponding return. (To reiterate,
adjusting a return means successfully influencing the op-
ponents of Player A to use a specific type of second stroke
more frequently after Player A uses another specific type of
stroke.) The matrix hides any rows and columns with small
values in order to emphasize key return adjustments. To
ease navigation of this large amount of returns, we group
columns and rows according to the stroke technique of the
first and second stroke in the return, respectively. Initially,
detailed information for each entry is not visible. Instead,
group blocks are displayed, where the lightness of a block
encodes the average impacts of returns within that block. If
a user is interested in a block of returns, she/he can click
the block and examine the detailed impacts of each return
within the block (Fig. 4B-2). When a user hovers over an
entry, the size of the impact will be displayed (Fig. 4B-3).
Users can also click an entry to select particular a return
adjustment of Player A, to explore how the impacts of this
adjustment are generated and accumulated.

4.3.3 Accumulation View

After a user selects a return adjustment of Player A, the
accumulation view (Fig. 4C) enables visual tracking of how
the impacts of this return adjustment accumulate in each
tactic (T3).

This view contains a flow chart that represents the varia-
tion in Player A’s scoring rate after he or she adjusts a return
during his or her tactics (Fig. 3C). Flow charts are widely
used to visualize temporal variations in variables [50], [51],
[52]. In the accumulation view, the flow chart intuitively
illustrates the process through which impacts accumulate
gradually over the course of different tactics and finally ag-
gregate into the total impact. In the accumulation view, the
width of the main flow (Fig. 4C-4) encodes the accumulated
changed scoring rate, and the width of branches (Fig. 4C-
1) encodes the variation of the scoring rate at each tactic.
When users hover on each branch, the original scoring rate
(above) and changed scoring rate (below) are displayed in a
detail view (Fig. 4C-3). For the changed scoring rate, a pie
chart displays how much of this rate change was caused by
the adjustment at the current tactic versus how much was
caused by adjustments at previous tactics.

The bar chart (Fig. 4C-7) of each tactic shows six stroke
states, arranged based on their impact on scoring proba-
bilities when they are at that tactic’s last stroke. The first
three states displayed are those that do the most to increase
scoring probabilities. The final three displayed are those that
do the most to decrease those probabilities. The height of the
orange bar encodes the increase in scoring probability, while
the height of the blue bar encodes the decrease. This helps
users to see how adjustments impact a tactic’s last stroke
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and the corresponding scoring probabilities.

4.3.4 Impact View

After a user selects a tactic, the impact view (Fig. 4D)
presents how the impact is generated through the two
returns within the tactic. The impact view must display the
adjusted many-to-many probabilities of states in the first
return, the changed probabilities of states in the second
return, and the scoring rate after the third stroke (T4).

Justification: There exist more than two hundred return
states, with each state involving a specific first stroke and
second stroke (Fig. 2). Displaying probabilities of return
states is a many-to-many relation visualization problem.

Flow or matrix. As discussed in Section 3.3, existing vi-
sualization studies employ node-link diagrams, flow charts,
and matrix views [53] to display many-to-many relations.
We initially employed flow charts to present the changed
probabilities, thinking they would be intuitive to under-
stand. However, these ended up visually cluttered due to
the many probabilities involved. We thus switched to a
clutter-free matrix view to help users browse how proba-
bilities were changed by the adjustments.

Layout. Two matrices display changing probabilities
over two returns. As discussed in Section 3.3, the layouts
used by MatrixWave [49] and iTTVis [22] were not suitable
for this project. Instead, we propose our current design,
which includes clutter-free matrix views and straight leader
lines with interactions that help users understand and inter-
pret how impacts compile within a tactic. The details of the
design are introduced as follows.

Description: The impact view uses a pair of matrices
to represent the changed probabilities of the states at the
two returns of a tactic, thus explaining the varying scoring
rate after the third stroke of this tactic. The first matrix
(Fig. 4D-2) presents how adjustments are made at the first
return of the tactic. The second matrix (Fig. 4D-4) displays
how the adjustment changes the probabilities of states at
the second return and further changes the scoring rate after
the third stroke. The three columns of stroke bars (Fig. 4D-
1, 4D-3, and 4D-5) from left to right represent the changed
probabilities of stroke states (different stroke technique and
ball position values) at the three strokes in a tactic. These
probabilities in each bar column are derived by aggregating
the probabilities in corresponding columns in the prior
matrix. The detailed encodings are as follows.

Bars for strokes. Three columns of bars (Fig. 4D-1, 4D-3,
and 4D-5) present the changed probabilities of stroke states
at the first, second, and third strokes. The height of each
bar encodes the changed probability of each stroke state.
The bar color indicates whether the probability increases
(orange) or decreases (blue). The probability of each stroke
state is divided into two parts. The first part is the changed
scoring probability after the stroke, i.e., the change in the
probability that the player gives a stroke with this state
and scores directly. This is encoded by bars on the left.
(This part of the first stroke is not shown, because it is
not considered in the current tactic). The second part is
the change in the probability that the player gives a stroke
with this state and does not score. This part is encoded
by bars on the right. When users hover on each part of
a bar, the corresponding rows and columns in the two
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matrices are highlighted (Fig. 4D). The original and changed
probabilities are also displayed in the detail view (Fig. 5C).
A pie chart displays how much of this probability change
was caused by the adjustment at the current tactic versus
how much was caused by adjustments at previous tactics.

Matrices for returns. A pair of matrices presents the
changed probabilities of all states that make up the two
returns within a tactic. The first matrix (Fig. 4D-2) presents
the adjustments (Fig. 3B) to the first return in the tactic. The
second matrix (Fig. 4D-4) presents the impacts on the second
return of the tactic (Fig. 3A). Similar to the layout of return
states in Fig. 2A, the changed probabilities of return states
are arranged as a matrix whose column and row headers
represent the stroke state at the first and second of the two
strokes, respectively. The headers are linked by bars rep-
resenting aggregate changed probabilities. As the impacts
pass through the matrix, the changed probabilities of stroke
states branch into the changed probabilities of return states,
and then merge into the changed probabilities of the next
stroke states. With this detailed display of changed probabil-
ities of return states, experts can better understand how state
probabilities of a return are adjusted, how adjustments to
previous returns change the state probabilities of following
returns, and how these changed probabilities aggregate into
changed scoring rates. When the serve tactic (i.e., the tactic
comprising Strokes 1-3) is presented in the impact view,
the columns of the first matrix are altered because the first
stroke in the serve tactic must be a serve stroke.

In each matrix entry, the area of the circle encodes
the changed probability as it transforms from the column
header to the row header. The circle color indicates whether
the probability increases (orange) or decreases (blue). A
switch button is placed at the bottom of the bars for the third
stroke. The right part of the button (corresponding to the
right part of the bars) is enabled by default. Circles in entries
of the second matrix represent the changed probabilities
from the column headers to the row headers. When users
switch to the left part of the button (which corresponds to
the left part of the bars), the circles in the entries of the
second matrix are transformed into rectangles. The areas of
the rectangles represent the changed scoring probabilities
at the third stroke due to the changed probabilities of
the first and second. When users hover on an entry, the
corresponding row and column are highlighted, and a detail
view (Fig. 5B) is displayed.

5 EVALUATION

We invited two collaborating experts (hereafter referred to
as “expert A” and “expert B”) introduced in Section 2.2 and
two new experts (hereafter referred to as “expert C” and
“expert D”) to evaluate the system. The two new experts
were not involved in developing the system. Expert C is a
Ph.D. student in sports science and expert D is a master’s
student. Both of them are senior analysts of table tennis data.

We gave a tutorial on how to explore the impacts on
the system to the experts. (1) We introduced what problems
and analysis tasks this study targets to the new experts
(10 minutes). (2) We described the visualization designs
of SimuExplorer and demonstrated how to use the system
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to complete the analysis tasks (15 minutes). (3) The experts
explored the system by themselves. We answered their
questions during the exploration (20 minutes).

We let the experts use the system to analyze the data
(introduced in Section 4.1) for two weeks after the experts
could use the system correctly. During this time, we an-
swered their questions at any time online. Afterward, the ex-
perts demonstrated to us how they found insightful patterns
using the system. We summarized the exploration processes
that experts A and B identified two patterns as two case
studies (Sections 5.1.1 and 5.1.2). We also summarized the
exploration processes that experts C and D identified an
insightful pattern as the third case study (Section 5.1.3).
These case studies were conducted on Google Chrome on
a PC (equipped with a 1920 x 1080 display). Besides the
insights in the case studies, we also presented other insights
obtained by the experts (Section 5.2). Finally, we asked them
open-ended questions about the usefulness and usability of
our system and collected their feedback (15 minutes, Section
5.3). The detailed open-ended questions can be referred to
in the supplementary materials.

5.1
We present three case studies to evaluate the system.

Case Studies

5.1.1 Impact Distributions of Different Players

In this case study, the expert examined different players’
impact distributions over return adjustments in the player
view. He then selected three female and male players due to
their distinct features. Fig. 3D illustrates the impact distribu-
tions of three female players, Fukuhara, Ding, and Zhang.
(For each player, the impacts were estimated according to
matches between the player and female right shake-hand
players.) The expert found that the positive impacts of
adjusting Ding and Fukuhara’s returns were larger than
those of adjusting Zhang's returns. He interpreted this result
that fewer improvements could be made in Zhang's returns
than those of Ding and Fukuhara. Zhang performed better
than the other two players. Fig. 3E illustrates the impact
distributions of three male players, Ryu, Wang, and Ma. The
expert found that the positive impacts of adjusting Ma and
Wang's returns were smaller than those of adjusting Ryu’s
returns. The expert interpreted the result that Ma and Wang
performed better than Ryu because fewer improvements
could be made in their returns.

This case study demonstrates that an expert could
browse and evaluate different players’ impact distributions
over return adjustments using the player view (Fig. 3D and
3E). The software used by the experts (introduced in Section
2.2) cannot provide such an overview.

5.1.2 Good Performance in Receiving Topspin to Middle-
hand

This case study analyzes matches between Ma Long and
right shake-hand players. Ma Long is commonly regarded
as one of the greatest table tennis players and has won the
Olympic games twice. The expert selected Ma Long and
right shake-hand players in the player view (Fig. 4A-3) and
browsed the adjustment view afterwards. He focused on
the return adjustments (Fig. 4B-2) that let the opponents
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use strokes with topspin (a stroke technique value) more fre-
quently after Ma Long’s strokes with topspin. Then he found
that the scoring rate always increased when the opponents’
strokes were to long middlehand (a ball position value) as
the rectangle colors are orange. And the scoring rate always
decreased when the strokes were to long backhand and long
forehand (two ball position values) as the rectangle colors
are blue. The expert commented that when a male player
let the opponents use strokes with topspin more frequently
he would decrease his scoring rate. It is because he would
be less likely to employ strokes with topspin at the third
stroke and score in that case. Hence, it is against common
knowledge that the scoring rate increased. The expert hoped
to determine the reasons. He clicked the biggest one of the
three orange rectangles. (Fig. 4B-1).

The accumulation view displays how the impact accu-
mulated in a rally (Fig. 4C). The expert found the impact
accumulated at each tactic evenly (Fig. 4C-1). He browsed
the bar chart of the tactic comprising Strokes 3-5 (Fig. 4C-
5) because the scoring probability began to increase in the
tactic. In this tactic, the scoring probability increased the
most when the third stroke of the tactic was with topspin to
long middlehand (hereafter referred to as “topspin L/M” ). It
increased the second most when the third stroke was with
topspin to long backhand (hereafter referred to as “topspin L/B”
). The expert clicked this tactic (Fig. 4C-7) to examine how
these increments were generated.

In the impact view (Fig. 4D), he found that the adjust-
ment increased the probability of opponents” stroke with
topspin L/M (Fig. 4D-6). This increment then increased the
probabilities of Ma’s next stroke with topspin L/M and top-
spin L/B (Fig. 4D-8), which further increased the chances that
Ma scored after the tactic (Fig. 4D-8). Moreover, the decrease
in the probabilities that Ma gave back with fopspin L/M and
topspin L/B (Fig. 4D-9) did not exceed the increase. Therefore,
Ma had more chances to score after this tactic (Fig. 4D-7).

The expert browsed the accumulation view again and
found that the increment in the scoring rate at the tactic
comprising Strokes 5-7 (Fig. 4C-6) was larger than that of
the tactic comprising Strokes 3-5 (Fig. 4C-5) according to
the width of the two branches. He hoped to determine the
reasons. He hovered on the branches of these two tactics
to examine the detailed views (Fig. 4C-2 and 4C-3) and
found that the increment at the later tactic comprised two
parts (Fig. 4C-3). One part was caused by the adjustment
in the current tactic, whereas the other part was caused by
adjustments in prior tactics.

The expert further clicked this tactic (Fig. 4C-8) to exam-
ine how adjustments in prior tactics caused the increments
in the impact view (Fig. 5). He quickly found that the
probabilities of the first stroke being with topspin L/M and
topspin L/B increased (Fig. 5A). The experts commented that
these two kinds of strokes’ probabilities increased at the
prior tactic (Fig. 4D-7). He hovered on several increased
probabilities in this tactic and found in the detailed views
that many of them were positively influenced by the adjust-
ments at prior tactics (Fig. 5B). Therefore, the scoring rate
after this tactic was increased by prior adjustments (Fig. 5C).

This case study demonstrates how the expert identified
an unexpected return adjustment in the adjustment view
(Fig. 4B-1) and browsed the adjustment’s even impact dis-
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Fig. 5. lllustration of the impact view for the case study discussed in Section 5.1.2. (A) The probabilities of the first stroke being with topspin L/M
and topspin L/B increased. (B) Many of the increased probabilities were partly caused by adjustments at prior tactics. (C) The increase in scoring
probability after the third stroke of the tactic was partly due to prior adjustments.

tribution over tactics in the accumulation view (Fig. 4C-1).
The case study also indicates how the expert interpreted the
increased scoring rate at the tactic comprising Strokes 3-5
using the changed probabilities at two returns of this tactic
represented by two connected matrices in the impact view
(Fig. 4D).

The identified patterns and interpretations cannot be
found using existing tools for table tennis data analysis,
such as the software used by the experts (introduced in
Section 2.2). The software cannot help users find interesting
adjustments with an overview of adjustment impacts or
help users interpret the impacts with intermediate details,
such as how many impacts are accumulated at tactics and
how the impact is generated due to the changed probabili-
ties in two returns in a tactic. Previous visualization systems
in the sports visualization area have not investigated how to
visualize a sports simulation and cannot be applied directly
to find out the patterns as detailed above.

5.1.3 Bad Performance in Receiving Half-long Backhand
after Short Forehand

This case study also analyzes matches between Ma Long
and right shake-hand players. The expert selected Ma Long
and right shake-hand players in the player view (Fig. 4A-3)
and then browsed the adjustment view. She focused on the
return adjustments that let the opponents employ strokes
with drop shot (a stroke technique value) more frequently
after Ma’s serve strokes (Fig. 6A). She found that the scoring
rate mostly decreased when the opponents’ strokes were to
short ball positions (most rectangle colors are blue, Fig. 6A-
1) whereas mostly increased when the opponents’ strokes
were to half-long ball positions (most rectangle colors are
orange, Fig. 6A-2). The expert commented that this pattern
is consistent with domain knowledge. When the opponent’s
strokes were to half-long ball positions more frequently, Ma
Long had more chances to attack and score. However, there
is an outlier (Fig. 6A-3). The expert hoped to determine the
reasons and clicked the entry.

The expert browsed the accumulation view and found
the impacts mainly took place in the first tactic (Fig. 6B-1).
She clicked the first tactic and examined how the impact was
generated in the impact view. She found that the adjustment
increased the probabilities that Ma Long employed chop
long (a stroke technique value) in the third stroke (Fig. 6C-
1) but the scoring probability of using chop long in total
was decreased (the bar representing the changed scoring
rate is blue, Fig. 6C-3). Meanwhile, the probabilities that

Ma Long employed attacking techniques, such as topspin,
were decreased (Fig. 6C-2). The expert commented that short
forehand (a ball position value) is close to half-long backhand
(a ball position value). When the opponents gave strokes to
half-long backhand after Ma’s serve strokes to short forehand,
Ma Long was not able to react timely with attacking strokes
and could only respond with chop long with few chances of
scoring. Therefore, it decreased Ma's scoring rate to increase
the opponents’ strokes to half-long backhand after Ma’s serve
strokes to short forehand.

This case study demonstrates that the adjustment view
enabled the expert to detect abnormal impact patterns
(Fig. 6A-3). The accumulation view helped him find the
impact at the tactic comprising Strokes 1-3 was the main
cause of the abnormal impact (Fig. 6B). And the impact view
helped the expert find the reasons by highlighting main
changes caused by the adjustment in the second return at
this tactic (Fig. 6C). This case study also demonstrates that
the experts who were not involved in developing the system
can use the system to find interesting impacts and interpret
them.

5.2

Using SimuExplorer, the experts verified existing hypothe-
ses, such as “For most players, the scoring rate is decreased
if we let the opponents employ strokes with topspin more
frequently after their strokes with topspin,” and formulated
new hypotheses, such as “For particular players, such as
Ma Long, it increases the scoring rate to let the opponents
employ topspin more frequently to long middlehand after their
strokes with topspin.” More hypotheses and their explana-
tions can be referred to in the supplementary materials.

Insights Obtained by the System

5.3 Expert Feedback

The feedback and suggestions of the four experts are sum-
marized in three aspects as follows.

Usefulness. Both the collaborating experts (experts A
and B) and new experts (experts C and D) agreed that
the system is useful for helping users interpret the sim-
ulated impacts of return adjustments. Experts A and B
mentioned that the system can help them interpret how
a return adjustment impacts the scoring rate and realize
their analysis tasks. Expert A commented: “This system
considers new key features of the return adjustments, i.e.,
combinational use of stroke technique and ball position and
the tactical associations. Additionally, the system visualizes
how the impacts of return adjustments are generated and
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Fig. 6. lllustration of the patterns in Section 5.1.3. (A) presents the
impacts of adjusting the opponents’ strokes with drop shot (a stroke
technique value) after Ma Long’s serve strokes. (B) presents a selected
adjustment’s accumulated impacts at the first two tactics. The expert
clicked the first tactic and (C) presents how the impact was generated in
the second return of this tactic.

accumulated over tactics for the first time. I think it is a very
advanced tool for analyzing the return adjustment impacts.”
Expert C mentioned that the system enables her to look
at the intermediate process of how an adjustment impacts
scoring rates in table tennis simulation. She had used the
Markov chain model to do a simulative analysis and this
system visualizes important details to help her explain the
results of the model. Experts C and D both mentioned that
the impact view provided them with insights into how to
improve players’ behaviors. In particular, experts A, B, and
C thought the four views in the system are useful. Expert D
thought all the four views but the player view are useful. He
would like to examine the adjustment view of each player
instead of browsing the player view.

Usability. Four experts agreed that the system is easy
to learn and use on the whole. Experts A and B appreci-
ated the impact view, which enhances understanding the
transfer process of the changed probabilities. Expert B com-
mented: “The impact view comprehensibly presents how
the changed probabilities branch, merge, and finally lead to
the changed scoring rate.” Experts C and D could under-
stand most designs of the system in the second phase (i.e.,
the introduction of the system design). Expert C thought
all the views but the adjustment view are easy to learn
and use. She did not learn the meaning of the adjustment
view at first. Nevertheless, she thought the view is easy
to use after she understood it. Expert D thought all the
views but the impact view are easy to learn and use. He
was not familiar with the Markov chain model and did
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not understand the impact view at first. However, after
we explained the model and its connection to table tennis
knowledge, expert D understood and successfully finished
the task. He still thought the impact view is a little complex.
But he thought the complexity is mainly due to the analysis
task instead of the design.

Suggestions. Expert A suggested that the system should
be enhanced to allow adjustments to multiple returns. Ex-
perts B, C, and D thought the system is comprehensive
regarding the analysis tasks.

6 DISCUSSION

Lessons learned. One lesson for pattern discovery [54]
involves how to display the intermediate impacts of a
player’s return adjustments in an interactive table tennis
rally. Initially, we planned to present the impacts at each
return, and to explore their variations over returns. How-
ever, because table tennis is so highly interactive and the
two players’ returns appear alternately, it is hard to visually
track the impacts of one player’s return adjustment. To solve
this problem, we grouped two consecutive returns into a
tactic, a strategy based on our expert collaborators” domain
knowledge. In this way, a rally can be shown as a sequence
of a player’s tactics, and the intermediate impacts can be
visually explored.

Limitations. Three limitations to our study, which could
be addressed in future work, are listed as follows. (1) Adjust-
ments can be made more flexible. In our system, when we
increase the probability of a return, other relevant returns
are proportionately reduced to maintain a constant total
probability. However, as some returns are more relevant to
the increased return than others, it would be better to reduce
returns differentially. (2) The system cannot support ex-
ploration of adjustments to multiple returns. Considerable
efforts can be exerted to improve the system so that it can
help users explore impacts caused by adjusting combina-
tions of multiple returns. (3) The system can be enhanced to
distinguish the impacts of return adjustment under different
conditions, such as when there are different scores.

Generalizability. Game sports, such as squash, tennis,
badminton, volleyball, and baseball, are most appropriately
regarded as dynamic interaction processes between two
parts (teams, doubles, or singles) [1]. Therefore, the Markov
chain model can also simulate structures of these sports,
if states are properly identified, and our system could be
extended to work with these sports. The impact view can
also be applied to other domains, such as those involving
many-to-many relations in event sequences as discussed
in Section 3.3. This view provides a layout for sequential
matrices and can be extended to include more than two
such matrices. Unlike the sequential matrices presented in
previous studies [22], [49], our impact view proposes a new
layout with sequential matrices in a straight line, a more
consistent and understandable design.

7 CONCLUSION

This work investigates the problem of unfolding the
simulative Markov chain model and exploring the inter-
mediate generation and accumulation of impacts caused by
return adjustments in table tennis. We worked closely with
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experts to determine an appropriate method of breaking a
rally into tactics and identifying the intermediate impacts
of return adjustments in these tactics. We further developed
SimuExplorer, a visualization system that supports multi-
level explorations of these impacts. We then conducted three
case studies to demonstrate the usefulness and usability
of our system. The main implications of this work are as
follows. (1) This study investigates the problem of visually
unfolding and interpreting a simulative model. (2) Our
system enables experts to gain insight into the impacts of
return adjustments in table tennis. Experts are able to use
the system to effectively analyze matches involving top table
tennis players.
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